
80240233: Complexity of Computation Lecture 12
ITCS, Tsinghua Univesity, Fall 2007 16 November 2007

Instructor: Andrej Bogdanov Notes by: Lin Yang

In this lecture we discuss probabilistically checkable proofs (PCPs). We first introduce the definition
of this paradigm, then give several results that illustrate this paradigm.

Probabilistically checkable proofs are an active area of research, owing to their connections to
communication and cryptography, and more surprisingly, to understanding the limitations of ap-
proximation alorithms.

1 Definition

To define what PCPs are, we look back to how interactive proofs (IP) work. In an interactive proof,
we have a probabilistic polynomial time verifier, and a computationally unbounded prover, and they
interact by sending message of polynomial length, so that the verifier is eventually convinced by
the prover of the validity of some statement about the input.

A weakness of this system is that the verifier cannot check for inconsistencies among the many
potential responses of the prover. We illustrate this point by a specific example. Consider the
3-coloring problem, in which a graph G is given and it is asked whether there exists a valid 3-
coloring of the vertices of G. Here is a candidate protocol, which illustrates how the prover can be
inconsistent in his answers:

Candidate Protocol for 3-coloring:

V : Choose a random edge from G.
Ask for the colors of the two end points of the edge.

P : Give the colors of the points.

V : If the colors are different, accept.

In this protocol the verifier doesn’t know whether the prover always gives the same color for the
same vertex. The prover may not be committed to any specific coloring, and he can answer any
query by providing two distinct colors. Then the verifier will always accept, even though G may
not be 3-colorable.

To eliminate cheating of this kind, we can ask the prover to write out the coloring he should be
having in mind into a proof. If the graph is not 3-colorable, then there must be at least two endpoints
on which the written proof gives the same answer, so the verifier will detect this inconsistency with
probability at least 1/m, where m is the number of edges in the graph.

So the idea is to use written proofs instead of a prover. It might see that we are not making
any progress, because this looks just like a usual, non-interactive NP-proof. However, we allow

1



2

π

V

Written commitment of
P ’s behavior

proof certificate

Figure 1: The prover’s responses written out

exponential size proof, and allow the verifier to use randomness. This gives a polynomial-time
verifier the potential to query as many as 2poly(n) bits in the proof, even though he will actually
see only poly(n) of those bits in any particular run.

In short, PCPs describe interaction between a randomized polynomial time verifier and exponen-
tially long written proof. Denote the verifier and the proof as V and π, respectively. We define the
following two parameters for PCPs:

q(n) = the number of queries V makes to π.
r(n) = the number of random bits used by V .

Here we give the formal definition:

Definition 1. PCP(r(n), q(n)) is the class of decision problems L such that there exists a ran-
domized oracle polynomial-time algorithm V which, given access to a proof π, on every input x of
length n, uses r(n) bits of randomness, makes q(n) queries into π, and

x ∈ L ⇒ ∃π : Pr
[
V π(x) = 1

]
≥ 2/3

x 6∈ L ⇒ ∀π : Pr
[
V π(x) = 1

]
≤ 1/3

Note that given r(n) randomness and q(n) queries, we can access at most 2r(n) · q(n) positions. So
the effective proof length is 2r(n) · q(n), which is in 2poly(n).

ACC/REJ

π

V

Figure 2: How PCP works



3

With different configuration of parameters, PCP’s power varies greatly. With polynomially many
random bits and queries, PCP can simulate interactive proofs, that is

Theorem 2. IP ⊆ PCP(poly(n), poly(n)).

To simulate an interactive proof (P, V ) by a PCP π, the proof π will contain an entry for each
round k sequence of messages m1, . . . ,mk sent by the verifier V up to round k. The proof entry
π(k,m1, . . . ,mk) then consists of the response ak+1 of the prover P in the next round. The PCP
verifier simulates the behavior of V , each time querying the proof π at the location specified by
V ’s questions so far and interpreting the corresponding entry in π as the answer of the prover in
the interactive protocol.

Also, as the effective proof length is at most 2poly(n), an NEXP machine can simulate arbitrary
PCPs:

Theorem 3. PCP(poly(n), poly(n)) ⊆ NEXP.

Surprisingly, this containment is tight:

Theorem 4 (Babai, Fortnow, Lund). NEXP ⊆ PCP(poly(n), poly(n)).

Another surprising (and very useful) fact is that NP is equivalent with PCP with O(log(n)) random
bits and constant number of queries. This is known as the PCP theorem.

Theorem 5 (Arora, Lund, Motwani, Safra, Sudan, Szegedy). PCP(O(log(n)), O(1)) = NP.

One implication of the PCP theorem is that if you write the homework in a specific form, Andrej
can check whether it is correct with confidence 99% by only looking at a constant number of random
places.

We now begin proving Theorem 4.

2 Probabilistically checkable proofs for NEXP

At a very high level, we will try to imitate the proof of P#SAT ⊆ IP. That is, we first construct
a boolean predicate to represent the computation of NEXP, then convert the predicate into a
polynomial, and at last, use the power of the PCP facilities to check the value of the polynomial.

Recall that, a language L is in NEXP means, there exists non-deterministic Turing Machine N that
runs in exponential time, such that N accepts x if and only if x ∈ L. To encode the computation
of N into a predicate, we resort to the computation tableau of N on input x, as in the proof of the
Cook-Levin Theorem. The computation tableau is a big table whose ith row contains the content
of the tape1 of the Turing Machine at time i, divided into cells. Since in each step the TM is only
allowed to change only the portion of the tape near the head of the Turing Machine (the head

1We assume N has one tape, which in the last step always contains the answer of the computation in its first cell.
Multiple tape NTMs can be simulated by such a NTM while roughly maintaining the running time.



4

marked on the tape by a special symbol), for each pair of adjacent rows there is a small 2 × 3
window so that the difference between the rows is limited to this window.

Technically, in any computation the cells of the tableau are occupied by elements of some alphabet
Σ whose size is independent of the input x. For convenience we will represent each element of Σ as
a binary string and think of the cells of the tableau as occupied by bits rather than elements of Σ.
Then the windows that describe changes in the tape grow from size 2× 3 to size 2× (c/2), where
c is some constant.

Let n denote the length of x. Since N(x) runs in 2poly(n) steps, it can use at most 2poly(n) cells of
the tape, so we can think of the tableau as having dimensions 2m/2 × 2m/2, where m = poly(n).

The predicate “N accepts x” is then equivalent to saying that all 2×c windows in the configuration
tableaus are valid transitions with the computation of N on input x. By “valid transitions” we
mean that windows in the first row should contain the input x, windows in the middle should either
be equal (if the head is not around) or consistent with the operation of N (if the head is around),
and the first window in the last row should check that the computation accepted. We can represent
all these validity checks by a collection of 2m boolean predicates corresponding to the windows in
the tableau. The idea is illustrated in Figure 3.

2poly(n)

2poly(n)

Tape Content

Compute
Steps

x

Window:

local

transitions

behaves as

specified

0 0 0 0

y ∈ {0, 1}poly(n)
index

Σ

0 1 0 0 1

encoding

accept/reject

Figure 3: The configuration tableau

Step 1: Encoding As we just argued, there is a collection of 2m boolean predicates correspond-
ing to windows in the computation tableau so that N(x) accepts iff all these predicates can be
simultaneously satisfied. We want to combine all this predicates into a single, efficient predicate
VALID. To do this, we introduce a new variable y which will index windows in the computation
tableau. Each window can be indexed by its first cell, and there are 2m cells, so y will take values



5

in {0, 1}m. Define the predicate VALID as:

VALID(y, b1, b2, . . . , bc) =


1, If the transition at the window indexed by y is valid

when the window cells contain the values b1, . . . , bc
0, otherwise

A boolean formula — in fact, a DNF of length O(m + c) — describing the predicate VALID can
be computed efficiently from the description of N and the input x (as well as the bound on the
running time of N). We won’t worry about the details of this, which are all technical.

A computation of N on input x populates each cell indexed by y of the tableau by a bit; so we can
think of it as providing an assignment A : {0, 1}m → {0, 1}. Then N accepts x if and only if this
assignment satisfies the VALID predicate for all y:

x ∈ L ⇐⇒ ∃A ∀y ∈ {0, 1}m : VALID(y, A(y), . . . , A(y + c/2− 1), (1)

A(y + 2m/2), . . . , A(y + 2m/2 + c/2− 1)).

To save notation, we will use Ã(y) to represent the vector of values (A(y), . . . , A(y+2m/2+c/2−1)).

Step 2: Arithmetizing Turn the predicate VALID into a polynomial p. We use the same rules
as in the proof of P#SAT ⊆ IP: ū→ 1− u, u ∨ v → u · v, u ∧ v → 1− (1− u)(1− v).

Since VALID is a DNF of size O(m+ c), the polynomial p will have degree O(m+ c). Thus p and
VALID have the same value on {0, 1}m+c

∀ y ∈ {0, 1}m, b1, b2, . . . , bc ∈ {0, 1} : VALID(y, b1, b2, . . . , bc) = p(y, b1, b2, . . . , bc)

but p can now be evaluated outside {0, 1}m+c, as in the interactive protocol for P#SAT.

The verifier wants to be convinced that for some assignment A : {0, 1}m → {0, 1}, p(y, Ã(y)) = 1
for all y ∈ {0, 1}m. Since p is a low-degree polynomial, inspired by the interactive protocol for
#SAT, we may ask for a proof of the statement∑

y∈{0,1}m
(p(y, Ã(y))− 1) = 0

by asking for the values of partial sums of the expression p(y, Ã(y)), where the free variables in y
are replaced by random elements in a sufficiently large field F.

Step 3: The interactive proof There are several problems with this approach. First, how do
we enforce the fact that A should take boolean values over the domain {0, 1}m? One idea is to
modify the expression in a way that asks for the conditions A(y)(A(y)− 1) = 0 to also be enforced
for every y. So the verifier can instead ask for a proof that∑

y∈{0,1}m
(p(y, Ã(y))− 1) +

∑
y∈{0,1}m

A(y)(A(y)− 1) = 0.



6

Should the verifier be convinced if the prover can prove this statement instead? Not really: Suppose
for instance that p(y, b1, . . . , bc) = 0 for all inputs. Then the prover can engineer an assignment
to the values A(y) ∈ F to make the polynomial vanish, e.g., choose A(0) to satisfy the condition
−1 +A(0)(A(0)− 1) = 0 over F and A(y) = 0 for other ys.

There is a trick we will describe in the next lecture that gets around this problem. The verifier will
do the following: First, choose a random t ∼ F (the field should be of size at least 2m) and then
ask the prover to certify that∑

y∈{0,1}m
(p(y, Ã(y))− 1) · t0y +

∑
y∈{0,1}m

A(y)(A(y)− 1) · t1y = 0. (2)

Here, z denotes the number one would get by reading off the string z in binary, and tz is the usual
powering operation.

Note that if all the summation terms are zero, for every choice of t this expression is zero. Next time
we will show that if any one of the terms is nonzero, then for a random choice of t this expression
has good chance of being nonzero.

There is another, more important issue at hand. The interactive protocol for #SAT made crucial
use of the fact that it was working with a low degree polynomial. The polynomial p is indeed of
low degree, but how about p(y, Ã(y))?2 This expression doesn’t even have meaning — A is not
even defined outside {0, 1}m! Yet we want to “force” A to behave as a low-degree polynomial, so
that the whole expression p(y, Ã(y)) is a polynomial of low degree.

Yet another issue is that at the end of the interactive protocol, the verifier will need to evaluate an
expression of the type

p(y, Ã(y))− 1) · t0y +A(y)(A(y)− 1) · t1y

at a random point y ∈ Fm to check against the provers claims. But how will the verifier know what
A “is” at a random point in F? This is

To answer the last two questions, we have to find a way to specify — and make available to the
verifier — the values of the function A : Fm → F, where A is a low-degree polynomial which is
consistent with the assignment A : {0, 1}m → {0, 1}. The function A will be given to the verifier
in the form of an exponentially long table containing all the values A(y) : y ∈ Fm, as part of the
probabilistically checkable proof π. Now it remains to find a way to enforce the fact that the values
in this table represent actual evaluations of some low-degree polynomial over F.

3 Multilinear Extension

Recall the problem we are trying to solve: We want the function A : Fm → F, which represents the
contents computation tableau of N(x), to behave like a low-degree polynomial over F. On the one
hand, we want to allow the values of A on {0, 1}m to be set arbitrarily in the proof (as we want to

2You may think that multiplying by tz is also an issue, but as we will show next time, this is not a problem – tz

is a low degree polynomial in z.



7

check the existence of tableau that satisfies certain conditions). On the other hand, we want A to
be of low degree.

We will use a general procedure that allows us to “extend” any set of values A(y), where y ∈ {0, 1}m
into a polynomial A : Fm → F of degree m. This polynomial will be multilinear, meaning the
individual degree of each variable is one.

A function A : Fm → F is multilinear if there are coefficients cS ∈ F such that

q(x1, x2, . . . , xm) =
∑

S⊆{1,2,...,m}

cS
∏
i∈S

xi

Claim 6. Given a set of values A(y) ∈ F, where y ∈ {0, 1}m, it is possible to choose values A(z) ∈ F
for z ∈ Fm − {0, 1}m so that A is a multilinear polynomial over F.

In fact, to make A multilinear, the values z ∈ Fm−{0, 1}m are uniquely determined, but we won’t
use this.

Proof. We argue by induction on m. When m = 1, A(y) = yA(1) + (1− y)A(0). For larger m, we
extend A via the formula

A(y1, y2, . . . , ym) = y1A(1, y2, y3, . . . , ym) + (1− y1)A(0, y2, y3, . . . , ym)

By inductive hypothesis, A(1, z) and A(0, z) can be extended to multilinear polynomials in z, so A
can be written as multilinear polynomial in y.


