
80240233: Complexity of Computation Lecture 13
ITCS, Tsinghua Univesity, Fall 2007 20 November 2007

Instructor: Andrej Bogdanov Notes by: Andrej Bogdanov

In the last lecture we began describing a probabilistically checkable proof for arbitrary decision
problems in nondeterministic exponential time. Now we fill in the remaining pieces.

1 Probabilistically checkable proofs for NEXP

Let us briefly sketch the probabilistically checkable proofs for NEXP problems from last time. We
started with an arbitrary decision problem L ∈ NEXP. We then sketched how, given a description
of a nondeterministic Turing Maching N for L, an input x, and a bound on the running time
on N of the form 2t(|x|) (where t(n) is some polynomial), we can construct in polynomial-time a
polynomial p(y, b) = p(y1, . . . , ym, b1, . . . , bc) of degree 2m such that N(x) accepts iff there exists
an assignment A : {0, 1}m → {0, 1} such that

p(y, Ã(y)) = 1 for all y ∈ {0, 1}m. (1)

where Ã(y) = (A(y), A(y+1), . . . , A(y+ c/2−1), A(y+2m/2), . . . , A(y+2m/2 + c/2−1)). Roughly,
p checks that a small window of the computation tableau of N on input x starting at position y is
valid. If all such windows are valid, then the computation should accept.

We want to check conditions (1) via a probabilistically checkable proof. The proof should roughly
play the same role that the prover played in the interactive proof for #3SAT: We should be
able to verify the conditions (1) by “asking” the proof to evaluate certain polynomials derived
from p at random points. In addition to the conditions 1, we also want to enforce the conditions
A(y)(A(y)− 1) = 0 for all y ∈ {0, 1}m, which guarantee that A is a boolean assignment.

For the interactive protocol to work, we must be able to enforce the condition that p(y, Ã(y)) is a
polynomial of low degree in y. But how can we enforce this condition if we don’t even know what A
is? The trick is to require A to be of a special form – a multilinear polynomial. Since a multilinear
polynomial can have degree at most m, the total degree of p(y,A(y)) will not exceed O(m2) (recall
that p has degree O(m+ c)).

We now show that if A is indeed multilinear, then given access to A (over a sufficiently large field)
we can verify condition (1) using a probabilistically checkable proof. In fact, this can be done using
an interactive proof.

Claim 1. For every problem L ∈ NEXP there is an interactive proof (PA, V A) in which both the
prover and verifier have oracle access to a function family A : Fm → F with the following properties:

x ∈ L =⇒ ∃A : Pr[(V A, PA) accepts x] = 1

x 6∈ L =⇒ ∀P ∗ ∀ multilinear A : Pr[(V A, P ∗A) accepts x] < 1/3.

Here F is any prime field of size at least 12 · 2m.

1



2

Notice that this protocol is weaker than usual because the soundness condition holds not for all A,
but only for multilinear A. We will somehow have to enforce the condition that A is multilinear.
For this we will take advantage of the fact that we are working with probabilistically checkable
proofs and not simply interactive proofs.

Proof sketch. The verifier will attempt to check the condition∑
y∈{0,1}m

(
(p(y, Ã(y))− 1) · t0y +A(y)(A(y)− 1) · t1y

)
= 0 (2)

for a random t ∈ F. Here tz is the number t raised to the integer whose binary expansion is z. To
check this condition, the verifier strips the summations as in the interactive protocol for #3SAT.
Recall that this is a protocol that checks statements of the form∑

y∈{0,1}m
q(y) = k

as long as q is a polynomial of degree poly(m) and the verifier can evaluate q at arbitrary points
in Fm.

To apply this protocol, we need to check that each of the above terms is a polynomial of degree at
most poly(m) that can be evaluated in Fm (using access to the oracle A). By assumption, the terms
p(y, Ã(y))−1 and A(y)(A(y)−1) are both polynomials of degree O(m) that can be evaluated by V
given oracle access to A. It remains to check that for fixed t, t0y and t1y are also such polynomials.
To see this, note that if zm . . . z1 is the binary expansion of z, we can write

tz =
m∏

i=1

t2
i·zi =

(
1 + (t2

i − 1) · zi
)
.

This is a multilinear polynomial in the zi that can be evaluated in polynomial-time by the verifier,
so all terms in the summation are polynomials of degree O(m3) that can be evaluated by V given
oracle access to A.

By the completeness analysis of the interactive protocol for #3SAT, if x ∈ L, no matter which value
t the verifier chooses, if the prover answers the queries correctly then V A accepts with probability
1. If x 6∈ L, then at least one of the conditions p(y, Ã(y)) − 1 = 0, A(y)(A(y) − 1) = 0 must be
violated for some y. It follows that the expression 2 is not identically zero as a polynomial in t.
Since the degree of t in this expression is 2m+1, for a random t ∼ F this expression vanishes with
probability at most 2m+1/|F| < 1/6. Conditioned on this event not happening, by the soundness
analysis of the interactive protocol for #3SAT, V A accepts with probability at most 1/6.

2 Implementing the oracle

In proving Claim 1 we made the crucial assumption that the function A given to the verifier is
multilinear. Now we must find a way to enforce this assumption.



3

The function A is provided to the verifier in the form of an exponentially long table A : Fm → F.
The verifier, who is restricted at examining only polynomially many entries in this table, must
somehow be convinced of the fact that A is multilinear.

A moment’s thought shows that this objective is impossible: One can start with a multilinear A,
and then modify A at a random point to make it non-multilinear. From the perspective of the
verifier, this point is very unlikely to be seen on a particular input x, so the verifier will never
“know” that the function he is looking at is not multilinear.

However, this is not particularly interesting. As long as the verifier never sees the deficiencies in A,
for the purposes of the interactive protocol above, one can pretend that the verifier has access not
to A, but to the multilinear function closest to A. Since the verifier will never see the difference
between the two, this will not affect the soundness of the protocol.

In general, the function A can differ from a multilinear function in much more that one place. If
the two functions differ at not too many places, then perhaps the verifier can “pretend” that A is
multilinear. In our setting, the verifier queries the function A at c + 2 random points. If we can
ensure that the function A differs from its “closest” multilinear function F on at most a 1/9(c+ 2)
fraction of points, then with probability at least 1/9 the verifier would behave as if it were looking
at F instead of A.

Let’s make this formal. We say that a function A : Fm → F is δ-far from multilinear if for every
multilinear function F : Fm → F, Prx∼Fm [F (x) 6= A(x)] > δ. A δ-multilinearity test is a randomized
oracle algorithm T that, on input 1m and given oracle access to A, runs in time poly(m) and

A is multilinear =⇒ Pr[TA(1m) accepts] = 1

A is δ-far from multilinear =⇒ Pr[TA(1m) accepts] < 1/2.

As usual, the constant 1/3 can be replaced with anything from 2−poly(m) to 1 − 1/poly(m) in the
second condition.

In the next section we will show that for every constant δ > 0, there exists a δ-multilinearity
test as long as |F| � m/δ. Using this fact, we now sketch how to finish the proof that NEXP ⊆
PCP(poly, poly).

Theorem 2. NEXP ⊆ PCP(poly, poly).

Proof sketch. Let L be an arbitrary decision problem in NEXP. The probabilistically checkable
proof for L will consist of two parts: The first part is the description of a supposedly multilinear
function A : Fm → F. The second part describes the responses of the prover in the interactive
protocol from Claim 1 when the verifier and prover have both oracle access to A. (There is also a
third part, which provides the verifier a description of a prime field F of size about 2O(m) to work
over, e.g. by specifying a prime number between 12 · 2m and 24 · 2m.)

Here is a description of the verifier V : On input x,

1. Run the δ-multilinearity test on A with δ = 1/9(c+ 2). If the test rejects, reject.

2. Simulate the verifier in the interactive protocol from Claim 1 using A as the oracle.



4

If x ∈ L, then the first part A of the proof equals the unique multilinear extension of some
assignment A : {0, 1}m → {0, 1} that satisfies (1) and the second part gives the responses of the
prover in Claim 1. By construction, the verifier will accept with probability 1.

If x 6∈ L, there are several events that may make the verifier accept.

• The function A is δ-far from multilinear

• A is not δ-far from multilinear, but A and its closest multilinear function F differ on some
query made by the verifier

• A and F are identical on all queries made by the verifier, but the simulation in step 2 above
accepts.

We bound the probability of each of the above events. For event 1, the probability is of accepting
is bounded by the soundness of the multilinearity test, which is at most 1/2.

For event 2, notice that the verifier makes at most c + 2 queries in F , each of which is uniformly
distributed in Fm. On any single query z, the probability that A(z) 6= F (z) is therefore at most
1/9(c + 2). By a union bound, the probability that A and F differ on some query made by the
verifier is at most 1/9.

For event 3, notice that the behavior of the protocol in Claim 1 would be unchanged if F was used
instead of A as the oracle. By the soundness of that protocol, the probability that the verifier
accepts is at most 1/3.

Summarizing, the total accepting probability of the verifier is ≤ 1/2 + 1/9 + 1/3 = 17/18 < 1. By
repeating the protocol several times this probability can be dropped to 1/3 (while the completeness
remains 1).


