In Lecture 9 we saw how the Nisan-Wigderson (NW) generator can be constructed assuming assuming the existence of an "average-hard" function. In this lecture, we will show that one way functions give a Blum-Micali-Yao (BMY) type pseudorandom generator. Recall the main distinction between these two types of generators:

- NW: The random seed is very small, but the running time of the generator depends on size of distinguisher.
- BMY: The running time of the generator is independent of the size of the distinguisher, but the random seed is longer.

Definition 1 (Blum-Micali-Yao Pseudorandom Generator). A Blum-Micali-Yao type pseudorandom generator is a collection of functions $G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}(m(n)>n)$, such that,

1. On input $x \in\{0,1\}^{n}, G_{n}(x)$ is polynomial time computable.
2. For every family of polynomial size circuits C, and every polynomial $p(n)$,

$$
\left|\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[C\left(G_{n}(x)\right)=1\right]-\operatorname{Pr}_{y \sim\{0,1\}^{m(n)}}[C(y)=1]\right|<\frac{1}{p(n)}
$$

for sufficiently large n.
Theorem 2 (Håstad, Impagliazzo, Levin, Luby). One-way functions exist if and only if pseudorandom generators (with $m(n)=\operatorname{poly}(n)$) exist.

In the last lecture we showed that every pseudorandom generator is a one-way function. It is more difficult to show that if one-way functions exist, then so do pseudorandom generators. In this lecture we will prove that if a special kind of one-way function called a "one-way permutation" exists, then pseudorandom generators also exist.

Definition 3 (One-way permutation). A family of functions $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a one-way permutation if $\left\{f_{n}\right\}$ is a family of one-way functions and each f_{n} is a permutation.

Theorem 4. If f_{n} is a one-way permutation, then

$$
G_{n}(x, r)=(f(x), r,\langle x, r\rangle)
$$

where x and r are of length n, and $\langle x, r\rangle=\sum_{i=1}^{n} x_{i} r_{i} \bmod 2$ is the "inner product" of x and r modulo 2 , is a pseudorandom generator from $\{0,1\}^{2 n}$ to $\{0,1\}^{2 n+1}$.

Since the input length will always be the same, we will write G for G_{n} and f for f_{n}.

1 Proof of Theorem 4

We prove the contrapositive. Suppose G is not a pseudorandom generator. Then there exists a family of circuits C of size $s(n)=\operatorname{poly}(n)$ and a function $\epsilon(n)=1 / \operatorname{poly}(n)$ such that

$$
\left|\operatorname{Pr}_{x, r \sim\{0,1\}^{n}}[C(f(x), r,\langle x, r\rangle)=1]-\operatorname{Pr}_{y \sim\{0,1\}^{2 n+1}}[C(y)=1]\right|>\epsilon(n)
$$

We will construct a new family of polynomial-size circuits C^{\prime} such that $\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[C^{\prime}(f(x))=x\right] \geq$ $\epsilon(n) / 2$, and conclude that f is not one-way.
Let's view C as a distinguisher between the distributions $(f(x), r,\langle x, r\rangle)$ and the uniform distribution $U_{2 n+1}$ on $2 n+1$ bits. If we write $z=f(x)$, then C distinguishes between the distributions

$$
\left(z, r,\left\langle f^{-1}(z), r\right\rangle\right): z, r \sim U_{n} \quad \text { and } \quad U_{2 n+1} .
$$

We can now turn the distinguisher C into a predictor P (see Lemma 5 in lecture 9) of size $s(n)+O(1)$ which satisfies

$$
\operatorname{Pr}_{x, r}\left[P(z, r)=\left\langle f^{-1}(z), r\right\rangle\right]>\frac{1}{2}+\epsilon
$$

which is the same as

$$
\operatorname{Pr}_{x, r}[P(f(x), r)=\langle x, r\rangle]>\frac{1}{2}+\epsilon
$$

By Markov's inequality, it follows that

$$
\operatorname{Pr}_{x}\left[\operatorname{Pr}_{r}[P(f(x), r)=\langle x, r\rangle]>\frac{1}{2}+\frac{\epsilon}{2}\right]>\frac{\epsilon}{2}
$$

Let S be the set of all x such that

$$
\begin{equation*}
\operatorname{Pr}_{r}[P(f(x), r)=\langle x, r\rangle]>\frac{1}{2}+\frac{\epsilon}{2} \tag{1}
\end{equation*}
$$

This suggests the following algorithm for inverting $f(x)$ when $x \in S$: On input $z=f(x)$, try to find all x^{\prime} such that $\operatorname{Pr}_{r}\left[P(z, r)=\left\langle x^{\prime}, r\right\rangle\right]>1 / 2+\epsilon / 2$. Since x satisfies (1), one of these x^{\prime} must equal x. To find out which one, apply $f\left(x^{\prime}\right)$ to all of them and see which one maps to z. Since f is a permutation, if $f\left(x^{\prime}\right)=z$ it must be that $x^{\prime}=x$.
Can we carry out this computation by a polynomial-size circuit? At first, the idea seems unreasonable: It looks like there might be exponentially many x^{\prime} such that $\operatorname{Pr}_{r}\left[P(z, r)=\left\langle x^{\prime}, r\right\rangle\right]>1 / 2+\epsilon / 2$, so even listing all of them, much less computing them, may take too much time. However, this is not the case, and the search of x^{\prime} can be carried out in polynomial-time, thanks to the following theorem:

Theorem 5 (Goldriech-Levin). There is a randomized algorithm A which on input ϵ and given oracle access to $g:\{0,1\}^{n} \rightarrow\{0,1\}$ runs in time polynomial in n and $1 / \epsilon$ and with probability $2 / 3$ outputs a list that contains all x such that

$$
\operatorname{Pr}_{r}[g(r)=\langle x, r\rangle] \geq \frac{1}{2}+\epsilon .
$$

2 Proof of the Goldreich-Levin theorem

We will start by proving a much weaker statement than what is required, and strenghten it in stages to derive the proof of the theorem. Our goal is to design an algorithm A that outputs all x such that

$$
\operatorname{Pr}_{r}[g(r)=\langle x, r\rangle] \geq p
$$

where $p=1 / 2+\epsilon$. Let us however start with the case $p=1$.

Case $p=1$. In this case, A can evaluate $g(r)=\langle x, r\rangle$ for every r and wants to "recover" x. It is not hard to see that g uniquely determines x, and the i th bit of x is given by $x_{i}=\left\langle x, e_{i}\right\rangle=g\left(e_{i}\right)$, where e_{i} is the string that has 1 in the i th coordinate and 0 everywhere else. So in this way we can recover x bit by bit.

Case $p=1-\frac{1}{6 n}$. Now we need to work a bit harder, since it might be the case that $g\left(e_{i}\right) \neq\left\langle x, e_{i}\right\rangle$, so querying g at e_{i} might be misleading. But we can deduce the value $\left\langle x, e_{i}\right\rangle$ by querying g at two random points, using a similar trick as when we did worst-case to average-case reductions for the permanent in Lecture 16. We know that for every $r, x_{i}=\left\langle e_{i}, x\right\rangle=\langle x, r\rangle+\left\langle x, r+e_{i}\right\rangle$. Moreover, for a random r, the strings r and $r+e_{i}$ are both uniformly random in $\{0,1\}^{n}$. So, if we choose a random r and compute $g(r)+g\left(e_{i}+r\right)$, we have that

$$
\operatorname{Pr}_{r}\left[g(r)+g\left(e_{i}+r\right) \neq x_{i}\right] \leq \operatorname{Pr}_{r}[g(r) \neq\langle x, r\rangle]+\operatorname{Pr}_{r}\left[g\left(e_{i}+r\right) \neq\left\langle x, e_{i}+r\right\rangle\right]<\frac{1}{6 n}+\frac{1}{6 n}<\frac{1}{3 n}
$$

By taking a union bound, we have that $\operatorname{Pr}_{r}\left[\exists i: g\left(e_{i}+r\right)+g(r) \neq x_{i}\right]<\frac{1}{3}$. So with probability $2 / 3$ this randomized algorithm recovers all the bits of x.

Case $p=\frac{3}{4}+\epsilon$. In the above algorithm, we now have that

$$
\operatorname{Pr}_{r}\left[g(r)+g\left(e_{i}+r\right) \neq x_{i}\right] \leq \operatorname{Pr}_{r}[g(r) \neq\langle x, r\rangle]+\operatorname{Pr}_{r}\left[g\left(e_{i}+r\right) \neq\left\langle x, e_{i}+r\right\rangle\right]<2(1 / 4-\epsilon)<1 / 2-2 \epsilon
$$

We cannot take a union bound of n such events anymore. However, by repeating this procedure several times, we can increase its success probability from $1 / 2-2 \epsilon$ to $1 / 3 n$, and then take the union bound.

In particular, consider the following algorithm: For each $1 \leq i \leq n$, compute the value $g(r)+g\left(e_{i}+r\right)$ for $t=O\left(\log n / \epsilon^{2}\right)$ independent values of r and let x_{i} equal the majority of the answers. Each trial gives the correct value for x_{i} with probability $1 / 2-2 \epsilon$ and the trials are independent, so by the Chernoff bound the probability that a majority of the trials fails is at most $\exp \left((2 \epsilon)^{2} t / 2\right)<1 / 3 n$.

Case $p=1 / 2+\epsilon$. We now give the proof of the theorem. It turns out that an interesting phenomenon happens when we try to take $p \leq 3 / 4$. By the analysis of the previous case, it follows that when $p>3 / 4$, there is a unique x such that $\operatorname{Pr}[g(r)=\langle x, r\rangle] \geq p$. However, when $p \leq 3 / 4$, there may be two or more such x s. So we must introduce a way into the algorithm to disambiguate between the different solutions.

There is also an evident (and related) problem with the above analysis: If we attempt to use the same algorithm, we would get that $\operatorname{Pr}\left[g(r)+g\left(e_{i}+r\right)=x_{i}\right]<1-2 \epsilon$, so it appears that we do not obtain any information about the value x_{i}.

However, suppose that someone could tell us the values $h_{r}=\langle x, r\rangle$ needed by the algorithm, so we wouldn't have to query g to get them and make potential mistakes. Then we would have

$$
\begin{equation*}
\operatorname{Pr}_{r}\left[h_{r}+g\left(e_{i}+r\right) \neq x_{i}\right] \leq \operatorname{Pr}_{r}\left[g\left(e_{i}+r\right) \neq\left\langle x, e_{i}+r\right\rangle\right]<1 / 2-\epsilon \tag{2}
\end{equation*}
$$

so the previous algorithm would work - provided that we knew the values $h_{r}=\langle x, r\rangle$.
How can we get hold of the values h_{r} ? One possibility is to simply guess them, and think of each possible guess as giving a candidate value for x. So to obtain a list of all x, one can simply go through all the choices for h_{r}. How many such choices are there? For each i, the algorithm uses $O\left(\log n / \epsilon^{2}\right)$ choices of r, and there are n possible values of i, so we need to guess $O\left(n \log n / \epsilon^{2}\right)$ different values h_{r}. It looks like going through all the choices would take time exponential in n !

One place in the algorithm where we can save immediately is this: Instead of using independent choices of r for the different coordinates i, we can in fact make the same choices. In the end, our analysis works by taking a union bound over i, so it does not matter if the randomness used for different coordinates is the same. This will reduce the number of random strings r needed by the algorithm to $O\left(\log n / \epsilon^{2}\right)$, so the number of possible choices for h_{r} becomes $2^{O\left(\log n / \epsilon^{2}\right)}=n^{O\left(1 / \epsilon^{2}\right)}$. Recall that in our setting, $\epsilon=1 / \operatorname{poly}(n)$, so this is still too large.

To further improve the algorithm, we introduce additional correlations among the r s. To amplify the success probability of (2) from $1 / 2+\epsilon$ to $1-1 / 3 n$, it is not really necessary that the r s are independent. It turns out that we can choose them in a dependent way so that we only need to guess the value h_{r} for a very small number of r, and this will automatically yield guesses for the other r s.

We choose the r s from the following distribution: First, choose a "basis" $r_{1}, \ldots, r_{m} \sim\{0,1\}^{n}$ independently at random, where $m=O\left(\log \left(n / \epsilon^{2}\right)\right)$. Then, for every subset $S \subseteq\{1, \ldots, m\}$, set $r_{S}=\sum_{j \in S} r_{j}$. Notice that guesses h_{j} for the values $\left\langle x, r_{j}\right\rangle$ automatically yield guesses h_{S} for the values $\left\langle x, r_{S}\right\rangle$ via the formula $\left\langle x, r_{S}\right\rangle=\sum_{j \in S}\left\langle x, r_{j}\right\rangle$.

We can now give the algorithm A from the theorem:
$A^{g}:$ Choose r_{1}, \ldots, r_{m} independently at random from $\{0,1\}^{n}$.
For every choice of values $h_{1}, \ldots, h_{m} \in\{0,1\}$:
For every $1 \leq i \leq n$:
For every $S \subseteq\{0,1\}^{m}$:
Set $r_{S}=\sum_{j \in S} r_{i}$ and $h_{S}=\sum_{j \in S} h_{j}$.
Compute $a_{i, S}=h_{S}+g\left(e_{i}+r_{S}\right)$.
Set $x_{i}=$ majority $_{S}\left(a_{i, S}\right)$.
Output $x=x_{1} \ldots x_{n}$.

We choose $m=\log \left(6 n / \epsilon^{2}\right)$, so the number of possible choices for h_{1}, \ldots, h_{m} is $6 n / \epsilon^{2}$ and the running time of the algorithm is polynomial in n and ϵ.

Claim 6. For every x such that $\operatorname{Pr}_{r}[g(r)=\langle x, r\rangle] \geq 1 / 2+\epsilon$, with probability $2 / 3$ over the choice of r_{1}, \ldots, r_{m}, A^{g} outputs x.

This claim almost proves the Goldreich-Levin theorem. The only difference is that it only guarantees each x satisfying the condition will appear in the list with probability $2 / 3$, while the theorem says that the list contains all such x with probability $2 / 3$. To take care of this, we run the algorithm 2^{n} times and take the union of all the lists output by it. Then each such x will appear in the list with probability $1-3^{-n}$, so by a union bound the list will contain all such x with probability $2 / 3$.

Proof. We will show that A^{g} outputs x when $h_{i}=\left\langle x, r_{j}\right\rangle$ for all $1 \leq j \leq m$, which also implies $h_{S}=\left\langle x, r_{S}\right\rangle$ for every $S \subseteq\{1, \ldots, m\}$. Let us fix this choice for h_{i}. As before, is enough to show that for all i,

$$
\operatorname{Pr}_{r}\left[\operatorname{majority}_{S}\left(h_{S}+g\left(e_{i}+r_{S}\right)\right)=x_{i}\right]>1-\frac{1}{3 n} .
$$

Let

$$
Y_{S}= \begin{cases}1, & \text { if } h_{S}+g\left(e_{i}+r_{S}\right)=x_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Then for every S,

$$
\operatorname{Pr}\left[Y_{S}=1\right]=\operatorname{Pr}\left[h_{S}+g\left(e_{i}+r_{S}\right)=x_{i}\right]=\operatorname{Pr}\left[g\left(e_{i}+r_{S}\right)=\left\langle x, e_{i}+r_{S}\right\rangle\right] \geq \frac{1}{2}+\epsilon
$$

The main observation here is that the random variables Y_{S} are pairwise independent, since the variables r_{S} are pairwise independent and Y_{S} is determined by r_{S}. We can therefore use Chebyshev's inequality to obtain a deviation bound on $Y=\sum_{S \subseteq\{0,1\}^{m}} Y_{S}$. Let us assume for simplicity that $\operatorname{Pr}\left[Y_{S}=1\right]=1 / 2+\epsilon$. Then

$$
\mathrm{E}[Y]=\sum_{S \subseteq\{0,1\}^{m}} \mathrm{E}\left[Y_{S}\right]=(1 / 2+\epsilon) \cdot 2^{m} \quad \text { and } \quad \operatorname{Var}[Y]=\sum_{S \subseteq\{0,1\}^{m}} \operatorname{Var}\left[Y_{S}\right] \leq 2^{m} .
$$

By Chebyshev's inequality, we have

$$
\begin{aligned}
\operatorname{Pr}\left[x_{i} \neq \text { majority }_{S}\left(a_{i, S}\right)\right] & \leq \operatorname{Pr}\left[Y<\mathrm{E}[Y]-\epsilon \cdot 2^{m}\right] \\
& \leq \operatorname{Pr}\left[Y<\mathrm{E}[Y]-\epsilon \cdot 2^{m / 2} \cdot \sqrt{\operatorname{Var}[Y]}\right] \\
& \leq \frac{1}{\left(\epsilon \cdot 2^{m / 2}\right)^{2}}<\frac{1}{3 n} .
\end{aligned}
$$

