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When we discussed lower bounds for constant depth circuits in Lecture 7, one of the main mo-
tivations was to gain some understanding of the NP versus P/poly question. Although it is
widely believed that NP 6⊆ P/poly, it is not even known how to prove the much weaker statement
NEXP 6⊆ P/poly. Yet we know a proof that the parity function is not computable by constant
depth circuits. If we work a little bit harder, shouldn’t we be able to generalize this proof to a
lower bound for polynomial-size cirucits?

In the mid 1990s Razborov and Rudich gave an interesting explanation as to why the methods
used to prove results like PARITY 6∈ AC0 are unlikely to generalize to the setting of P/poly. They
looked at all known proofs of circuit and formula lower bounds and noticed that at a very high
level, all these proofs follow the same general pattern. Then they showed that if a circuit lower
bound for P/poly follows the same pattern, something very strange happens: A certain strong form
of one-way functions cannot exist. So if we believe in strong one-way functions, which most people
do, then the type of proof we used to show PARITY 6∈ AC0 cannot prove, say, that SAT 6∈ P/poly.

First, we formalize the notion of “strong one-wayness”.

1 Strong pseudorandom objects

In the last few lectures we showed how, starting from a one-way permutation, one can derive a
pseudorandom generator, which in turn yields a pseudorandom function. In doing so, we made
an implicit choice of the “hardness parameters” with respect to which these objects were defined.
For one-way permutations, we asked that, for an arbitrary polynomial p, the permutation is hard
to invert on 1/p(n) fraction of inputs for every circuit family of size p(n). For pseudoranom
generators, we asked that no circuit family of size p(n) can distinguish the output of the generator
from a random string with probability over 1/p(n). For pseudorandom functions, we again asked
that no circuit family of size p(n) with oracle access to the function can tell the function apart from
random with probability over 1/p(n).

All these proofs worked by reduction: We fix a device that breaks the object we are reducing to and
derive a device that breaks the object we are reducing from. Each time, the reduction incurs some
polynomial cost: For instance, if we have a circuit of size p(n) that distinguishes the output of the
pseudorandom generator from random with probability over 1/p(n), then we derive a circuit that
breaks the one-way permutation used to construct the generator on q(n) = poly(n, p(n)) fraction
of inputs.

We could have carried out the same reductions if instead of polynomial, our notion of hardness
was subexponential. We will call such pseudorandom objects “strong”. For instance, a family
of functions fn : {0, 1}n → {0, 1}n is strongly one-way if on input x, fn(x) is polynomial-time

1



2

computable and there exists a constant δ > 0 such that for every circuit family C of size 2n
δ
,

Prx∼{0,1}n [f(C(f(x))) = f(x)] < 2−n
δ
.

Similarly we can define strong pseudorandom permutations, strong pseudorandom generators and
strong pseudorandom functions. In the case of pseudorandom functions, something interesting
happens under the strong definition: A function family1 Fz : {0, 1}k(n) → {0, 1}, where z ∈ {0, 1}n,
is strongly one-way if on input (x, z), Fz(x) is polynomial-time computable and there exists a
constant δ > 0 for every circuit family C of size 2n

δ
,∣∣Prz[CFz(1n) = 1]− PrR[CR(1n) = 1]

∣∣ < 2−n
δ
.

Let’s look at the setting of parameters k = nγ , where γ is a constant smaller than δ. Notice that
the circuit C is then large enough to query the function C at all its inputs. So we can “feed” the
function Fz as an input rather than as an oracle to the circuit C: Since Fz has description size
2k = 2n

γ
, the size of C will be polynomial in the length of Fz.

We summarize the discussion in the following theorem.

Theorem 1. Suppose that strong one-way functions exist. Then for every polynomial p there exists
a constant γ > 0 and a family of functions Fz : {0, 1}nγ → {0, 1}, z ∈ {0, 1}n such that on input
(x, z), Fz(x) is polynomial-time computable and for every circuit family CN : {0, 1}N → {0, 1} of
size p(N) and every sufficiently large N = 2n

γ
,∣∣Prz∼{0,1}n [CN (〈Fz〉) = 1]− PrR[CN (〈R〉) = 1]

∣∣ < 1/p(N)

where R : {0, 1}nγ → {0, 1} is a random function.

In the last two lectures, we proved this theorem assuming the existence of strong one-way permu-
tations. The assumption that strong one-way permutations exist is believed to hold.

2 Likeliness and constructivity

Now let us, revisit the proof that PARITY 6∈ AC0 from Lecture 7. At a very high level, the proof
worked as follows: We defined a property of functions and argued that the parity function has this
property, while no function computed by a small constant-depth circuit can have the property.

The property we looked at in the proof (due to Razborov and Smolensky) was, roughly, that “f
cannot be approximated by a low-degree polynomial”. More precisely, for f : {0, 1}n → {0, 1}, we
looked at the following property:

We say f has the HIGHDEGREE property if for every polynomial p of degree at most√
n, Prx∼{0,1}n [p(x) = f(x)] < 0.99.

1In the last lecture we looked at functions with n bits of output, but here it will be sufficient to have one bit of
output; we can take the first bit and ignore the other ones.
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Then, we showed that HIGHDEGREE(PARITY) = 1 (the parity function satisfies this property),
while HIGHDEGREE(f) = 0 for every f computed by a circuit of depth d and size 2O(n1/4d).

There is a different proof, also showing that PARITY 6∈ AC0, that we did not cover in class.
Roughly speaking, this proof goes by showing that functions computed by small depth circuits are
not “sensitive” to changes in their inputs – if the input to the function is flipped, the output is
unlikely to change – while the parity function is sensitive. There are several ways to formalize this
notion, and we choose one that is convenient for our discussion.

We say f(x1, . . . , xn) has the SENSITIVE property if for every S ⊆ {1, . . . , n} of size
2 log2(n) and every partial assignment of the inputs xi, i 6∈ S, f is not a constant
function over the remaining inputs xj , j ∈ S.

It is easy to see that SENSITIVE(PARITY) = 1. On the other hand, Furst, Saxe, and Sipser, then
Yao, and finally H̊astad showed (for different parameters) that functions f computed by not too
large circuits of fixed depth satisfy SENSITIVE(f) = 0.

Razborov and Rudich looked at these and other proofs of boolean circuit lower bounds (for suffi-
ciently explicit functions) and saw that, at a very high level, all these proofs look like the above
ones: They single out a property P of functions and show that the function to which the lower
bound applies has this property, while functions computed by the circuits under consideration don’t
have it. Moreover, they realized that the properties used in all these proofs were special in two par-
ticular ways; they satisfy two common features which we will call “likeliness” and “constructivity”.
We look into these two features next, looking into the SENSITIVE property as a guiding example.

Likeliness To motivate the “likeliness” feature, let us recall a basic fact from Lecture 3: A random
function is unlikely to be computable by a small circuit. In that lecture we proved explicit bounds
on the size of circuits needed to compute every function, but in essence the argument shows that
for any class of not too large circuits, the probability that a random function can be computed by
a circuit from the class is small.

Now suppose that we used some property P to prove a circuit lower bound for some class of circuits,
like AC0 or P/poly. We have then showed that P (f) = 1 for some explicit function f , like SAT
or PARITY. But since we know that random functions are also hard to compute by circuits in
the class, we might expect that P (R) = 1 with good probability for a random function R as well.
This reasoning is not sound, but it turns out that all known sufficiently “explicit” properties used
in circuit lower bounds have this feature. We call such properties “likely”.

Definition 2. A property P is likely if PrR[P (〈R〉) = 1] > 1/3 for sufficiently large n, where R is
a random function from {0, 1}n to {0, 1}.

For instance SENSITIVE is a likely property because for any one choice of
(

n
2 log2 n

)
variables to be

fixed and any one of 2n−2 log2 n fixings of these variables, the probability that a random function is
constant on the other 2 log2 n variables is 2 · 2−22 log2(n)

, so by a union bound:

Pr[SENSITIVE(R) = 0] ≤
(

n

2 log2 n

)
· 2n−2 log2 n · 2 · 2−22 log2(n) ≤ 22n · 2−n2

< 1/3.
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Constructivity The “constructivity” feature says that the property of a function is efficiently
computable when the truth table 〈f〉 is given as an input. Formally,

Definition 3. A property P is constructive if P (〈f〉) is computable in time 2O(n), where f is a
function from {0, 1}n to {0, 1}.

Notice the truth table of f is a string of length 2n, so time 2O(n) is time polynomial in the description
length of f .

To explain constructivity, we want to think of a candidate circuit lower bound proof – or any other
proof we are interested in for that matter – as an algorithm in disguise. This “duality” between
proofs and algorithms can be made formal, but it is easier to look at an example.

Since we are short on explicit lower bound proofs in computer science let’s look at an example from
mathematics – for instance the proof that “

√
2 is irrational”. This proof goes by trying to write√

2 as a rational number a/b, from where one derives a2 = 2b2 where a and b are integers. But this
is impossible because if we factor both sides, 2 appears an even number of times on the left and an
odd number of times on the right.

The same argument easily generalizes to tell us that
√
n is irrational whenever n is not a perfect

square. Now let us think of “n is not a perfect square” as a property P (n) of the number n. What
is the algorithmic complexity of computing P (n)? We can do this say by running the square root
algorithm from grade school whose running time is poly log n, which is polynomial in the description
length of n. Therefore, the proof that

√
2 is irrational relies on a constructive property of numbers.

Many known “explicit impossibility proofs” in mathematics and computer science rely on construc-
tive properties, although there are possible exceptions. (It is impossible to know for sure that a
proof “relies on a nonconstructive property”, since identifying the property in question is somewhat
of an art, and sometimes there are several candidates. We will see an example of this shortly.) In
particular, Razborov and Rudich went through the circuit lower bound proofs known at the time
and showed that they were all essentially constructive.

To give an example of a nonconstructive property, let us look at the proof that there exist functions
not computable by polynomial size circuits. This proof can also be viewed as an algorithm for
obtaining such a function: Choose one at random. This algorithm is not efficient, as the proof
does not give an efficient way of choosing this function; but the function to which the lower bound
applies (a random function) is not explicit either in any reasonable sense.

The SENSITIVE property is constructive: To compute if f is sensitive, try all possible subsets S
of size 2 log2 n, fix all possible assignments outside S, and try all assignments inside S to see if the
function is constant. This algorithm runs in time(

n

2 log2 n

)
· 2n−2 log2 n · 22 log2 n = 2O(n).
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3 Natural proofs

We call a property of boolean functions natural if it is both likely and constructive. Thus SENSITIVE
is a natural property. The next theorem shows that natural properties are unlikely to prove any
circuit lower bounds for P/poly:

Theorem 4. If there exist a natural property P such that for all f ∈ P/poly, P (fn) = 0 for
sufficiently large n, then strong one-way functions do not exist.

Proof. Since P is likely, we have that Pr[P (〈R〉) = 1] ≥ 1/3 for a random function R. Now let
Fz : {0, 1}nγ → {0, 1}, z ∈ {0, 1}n be an arbitrary function family computable by polynomial-size
circuits. Then P (〈Fz〉) = 0 for all z and sufficiently large n. In particular, we have that

PrR[P (〈R〉) = 1]− Prz[P (〈Fz〉) = 1] ≥ 1/3.

where R,Fz : {0, 1}nγ → {0, 1}. Since P is constructive, P (〈f〉) is computable by circuits of size
2O(n). By Theorem 1, strong one-way fucntions cannot exist.

We showed that the SENSITIVE property is natural. But how about the HIGHDEGREE property?
It is not hard to see that HIGHDEGREE is likely, but it is not clear at all that it should be
constructive. However, let us dig more deeply into the proof from Lecture 7 that PARITY 6∈ AC0.
To argue that HIGHDEGREE(PARITY) = 1, we argued by contradiction: Suppose that there is
a set A of size 0.99 · 2n on which PARITY can be written as a polynomial of degree

√
n. Then we

argued that any function f : A→ R can be represented as f̃ = p0 + ˜PARITY · p1, where p0, p1 are
polynomials of degree at most n/2, and used this to reach a contradiction (since there are more
such polynomial than this representation allows).

So we could argue that the proof from Lecture 7 in fact relies on the following property:

f has the HIGHDEGREE′ property if every g : Rn → R can be written in the form
g = p0 + f̃ · p1, where p0, p1 : Rn → R are polynomials of degree at most n/2.

This property is now constructive, as one can compute HIGHDEGREE′(f) by linear algebra: Look
at the linear space of all the polynomials p0 + f̃ · p1, where p0, p1 are “indeterminate” polynomials
of degree at most n/2, and check that the dimension of this space is 2n. This can be done using
Gaussian elimination in time 2O(n).

However, it is not clear anymore that HIGHDEGREE′(f) is likely (it might be the case, it just
does not appear easy to prove). However, without changing the spirit of the proof, we could have
used the following variant HIGHDEGREE′′ of the same property:

f has the HIGHDEGREE′′ property if the linear space of functions of the form p0+f̃ ·p1,
where p0, p1 : Rn → R, has dimension at least 3/4 · 2n.

Now HIGHDEGREE′′ is constructive by the same argument as for HIGHDEGREE′, but it turns
out that it is also likely, although we will not prove so here.
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To argue that the proof from Lecture 7 relies on a natural property, we had to change the proof a
little bit. If we go back to the proof, we can see that the change necessary to make the proof rely
on property HIGHDEGREE′′ instead of property HIGHDEGREE′ is very minor. So even though
the proof by itself may not be natural, it “naturalizes” in a very simple way.


