
80240233: Complexity of Computation Lecture 5
ITCS, Tsinghua Univesity, Fall 2007 23 October 2007

Instructor: Elad Verbin Notes by: Changcun Ma

In this lecture, we will talk about circuits and machines with advice.

1 Circuits

Recall the definition of P/poly from last time: This is the class of all decision problems that are
decided by a family of circuits {C1, C2, . . . }, where Cn takes an n bit input and produces one bit
of output, and the circuit sizes are polynomially bounded, that is there exists a polynomial p such
that Cn has size at most p(n).

We now show that circuits can simulate arbitrary deterministic computations:

Theorem 1. P ⊆ P/poly.

This theorem corresponds to the intuition that we can implement any computation in hardware — a
circuit with AND, OR, and NOT gates — in a way that preserves the efficiency of the computation:
Polynomial time computations give rise to polynomial size circuits.

This containment is in fact strict: There exist decision problems computable by polynomial-size
circuit families but not by Turing Machines. This is related to the fact that circuit families are
infinite objects – one for every input length, while Turing Machines are finite. So it is not surprising
that circuits are more powerful than Turing Machines in this way. However, it is generally believed
that circuits do not add much “interesting” power to Turing Machines. For instance there is no
problem in NP (or EXP, or NEXP) that is believed to be decidable by circuit families but not by
Turing Machines.

Proof sketch. Let L ∈ P, so L is recognized by a TM M that runs in less than p(n) time on inputs
of length n for some polynomial p. Let Σ be the alphabet that M uses for its tape. (We will assume
M has only one tape, as any machine can be simulated on a one-tape machine with polynomial
slowdown.) Given an input length n, we look at the computation tableau of M on length n inputs:
This is a table of dimensions t(n)× t(n) with entries in Σ that describes the computation history of
M . The cell i, j of this tableau contains the contents of the jth cell of the tape at time i (including
a special marker if the head of the tape happens to be there).

We associate a variable zij taking values in Σ with cell (i, j) of the tableau. The value in cell i at
time j is then determined by a function

zi,j = Ci,j(zi−1,j−1, zi−1,j , zi−1,j+1)

that determines the contents of cell i, j as a function of the contents of the three cells above it.
Since Ci,j is a function from Σ3 to Σ, it can be represented by a circuit of size OΣ(1). We now

1

2

create a circuit C by “cascading” the circuits Ci,j so that the input they receive comes from the
top row z1,j and its output is the element zt(n),0. We initialize the top row with the input x. The
resulting circuit has size O(t(n)2).

The idea in this proof is useful for establishing the NP-hardness of SAT. We will reduce from
bounded halting by way of the following problem called CKTSAT:

Input: The description of a boolean circuit C : {0, 1}n → {0, 1}. Problem: Is there an x ∈ {0, 1}n
such that C(x) = 1?

Clearly CKTSAT ∈ NP. We now show CKTSAT is NP-hard by reducing from bounded halting
(BH). The key observation we will use is that the way of building a circuit from a Turing Machine
described in the proof of Theorem 1 is uniform: Given a description of a machine M an input length
n, and a time bound t, we can construct in time poly(〈M〉, n, t) a circuit C : {0, 1}n → {0, 1} such
that for every x of length n, C(x) = M(x).

Now we reduce BH to SAT as follows. Given an instance (〈N〉, x, 1t) of BH, we think of the
nondeterministic TM N as an NP-verifier that takes input x, |x| = n and witness y, |y| = m(n)
and verifies that y is a witness for x. We then compute a circuit C : {0, 1}n+m(n) → {0, 1} such
that C(z, y) = N(z, y) for every pair (z, y) of the appropriate length. We then hardwire z = x in
C to obtain a new circuit C ′(y). By construction C ′(y) accepts for some y if and only if N(x, y)
accepts in t steps for some y, so that (〈N〉, x, 1t) ∈ BH if and only if C ′ ∈ CKTSAT.

2 Machines with advice

One way to think of circuits is as nonuniform versions of Turing Machines. The Turing Machine
has the same description on all input lengths, while circuits can act differently on different input
lengths. But how different can circuits in the same circuit family be? There is a formal way to
quantify this using the notion of advice.

A Turing Machine with advice is a special kind of machine that has, in addition to all its other
tapes, an advice tape. When the machine receives its input, the advice tape is initialized by a string
that depends only on the length of the input and not on the input itself. We say the advice has
length m(n) if on input x, only the first m(|x|) cells of the advice tape are used. We will use A(x, a)
to denote the output of the machine A on input x and advice a. The running time of A on input
length n is the maximum of the computation times of A(x, a) for every input x of length n and
advice string a of length m(n).

We now give an acceptance condition for Turing Machines with advice. We say that A decides L
if there exists a sequence of advice strings a1, . . . such that

x ∈ L =⇒ A(x, a|x|) accepts

x 6∈ L =⇒ A(x, a|x|) rejects.

Recall that SIZE(s(n)) is the class of decision problems recognized by circuit families of size s(n).
The two notions are closely related:

3

Theorem 2. For every function s(n) > n, If L ∈ SIZE(s(n)), then L can be decided by a Turing
Machine that runs in time O(s(n)2) with advice of length O(s(n) log s(n)).

Proof. Suppose L is decided by a circuit family {C1, . . . } of size s(n). Consider the following Turing
Machine M with advice: On input x of length n, M interprets its advice an as the description of
the circuit Cn and simulates Cn on input x. Cn can be described using O(s(n) log s(n)) bits. Since
Cn has size s(n), the simulation can be done in time O(s(n)2).

We have a containment in the other direction as well:

Theorem 3. For every t(n) > n, if L can be decided by a Turing Machine running in time t(n)
with advice of length m(n), then L ∈ SIZE(O(t(n + m(n))2)).

This proof follows the same lines of the proof of Theorem 1. That argument gives a circuit C(x, a)
that simulates the corresponding Turing Machine for L. We hardwire the corresponding advice a|x|
into this circuit in place of a to obtain a circuit C ′ for L on the given input length.

The notation P/m(n) is sometimes used for polynomial-time Turing Machines that take advice of
length m(n). The previous two theorems give the identity⋃

c>0

P/nc =
⋃
c>0

SIZE(nc).

This is consistent with our notation P/poly for the class of problems decided by polynomial-size
circuit families.

