
80240233: Complexity of Computation Lecture 8
ITCS, Tsinghua Univesity, Fall 2007 2 November 2007

Instructor: Andrej Bogdanov Notes by: Decheng Dai and Wei Yu

1 Parity is inapproximable by polynomials

The depth of a circuit is the length of the longest directed path from an input node to the output
node.

Definition 1. AC0 is the class of languages computable by circuit families of constant depth,
polynomial size, and whose gates have unbounded fanin and fanout.

In the last lecture we started proving the following theorem:

Theorem 2. Let PARITY be the parity function. That is, for every x ∈ {0, 1}n·PARITY(x1, ..., xn) =∑n
i=1 xi (mod 2). Then PARITY 6∈ AC0.

In the last lecture we proved that for every f : {0, 1}n → {0, 1}, that can be computed by a circuit
of size s and depth d can be approximated as

Prx[p(x) = f(x)] ≥ 0.99

where p is a polynomial of degree O((log s)2d). And we will prove that

Theorem 3. For every f of degree
√
n,

Pr[p(x) = PARITY(x)] < 0.99

This will establish 2.

As the definition of PARITY : {0, 1}n → {0, 1},PARITY(x1, ..., xn) =
∑n

i=1 xi (mod 2), we can
define the function ˜PARITY similar to PARITY, which is the same function except that it is a
mapping from {−1, 1}n → {−1, 1}.

Definition 4. ˜PARITY : {−1, 1}n → {−1, 1}, ˜PARITY(x1, ..., xn) =
∏n
i=1 xi.

We can translate each function p : {0, 1}n → {0, 1} to a function p̃ : {−1, 1}n → {−1, 1} via the
formula

p̃(x1, ..., xn) = 1− 2p(
1− x1

2
, ...,

1− xn
2

).

This has the effiect of replacing 0 with 1 and replacing 1 with −1.

1

2

Claim 5. Every function f : {−1, 1}n → R can be represented as

f(x1, ..., xn) =
∑

S⊆{1,...,n}

cs(
∏
i∈S

xi)

where cs is a real number.

Proof. By induction on n:

f(x1, ..., xn) =
1 + x1

2
· f(1, x2, ..., xn) +

1− x1

2
· f(0, x2, ..., xn)

Because f(i, x2, ..., xn) is a function from {0, 1}n−1 to {0, 1}, we can apply the inductive hypothesis.
The base case n = 0 is trivial.

Theorem 6. For every polynomial p of degree
√
n,

Prx∼{0,1}n [p(x) = ˜PARITY(x)] < 0.99.

Proof. Suppose not, and fix a polynomial p such that

Prx∈{0,1}n [p(x) = ˜PARITY(x)] ≥ 0.99.

Let A = {x : p(x) = ˜PARITY(x)} ⊆ {−1, 1}n. We will consider the set of all functions f : A→ R
and “count” the number of such functions in two different ways. Counting functions from A to R
does not quite make sense because there are infinitely many such functions, but the set of all such
functions forms a linear space F over R of dimension |A|. So instead of counting functions we will
be counting dimensions. On the one hand, we have

dimF = |A| ≥ 0.99 · 2n. (1)

But since each function f ∈ F can be writen as a polynomial, we can also write,

f(x) =
∑

S⊆{1,...,n}

cs
∏
i∈S

xi

=
∑

S:|S|≤n
2

cs
∏
i∈S

xi +
∑

S:|S|>n
2

cs
∏
i∈S

xi

=
∑

S:|S|≤n
2

cs
∏
i∈S

xi +
∑

S:|S|>n
2

cs
∏
i∈S

xi · ˜PARITY(x) · p(x)

=
∑

S:|S|≤n
2

cs
∏
i∈S

xi +
∑

S:|S|>n
2

cs
∏
i 6∈S

xi · p(x)

We can see that deg(
∏
i 6∈S xi) ≤

n
2 and deg(p(x)) ≤

√
n, consequently deg(f) ≤ n

2 +
√
n. So

each function in F can be written as a polynomial of degree n/2 +
√
n over the set A. Now the

3

polynomials of degree at most n/2 +
√
n also form a linear space P . One basis of this linear space

consists of all monomials of degree at most n/2 +
√
n, and there are

∑n/2+
√
n

i=0

(
n
i

)
such monomials.

So we have

dimF ≤ dimP =
n/2+

√
n∑

i=0

(
n

i

)
< 0.99 · 2n

for sufficiently large n (for instance using the central limit theorem). This contradicts (1).

2 Randomness versus determinism

We want to know that if NP 6∈ P/poly, but all we can prove are things like PARITY 6∈ AC0. In
the next few lectures we will see that proving circuit lower bounds is interesting not only because
it seems a good way to make progress on proving P 6= NP, but also – for much less obvious reasons
– it is deeply connected to the question of how much randomness helps in making computations
more efficient.

The best deterministic simulation we know of randomized algorithms for decision problems comes
from the trivial fact BPP ⊆ EXP. Is a subexponential, or even polynomial-time simulation, of BPP-
type algorithm possible? Let’s review some evidence for this problem. There were some instances
in the past where people came up with an efficient randomized algorithm for some problem, only to
discover later that the same problem can be solved deterministically. One example is the problem
problem of determining if a number is prime. This is a coNP question. In the 1970s it was first
shown that this problem is in coRP, then in RP as well. Many years later – in 2002 – primality
testing was discovered to be in P.

This parable seems to give evidence that if we work hard enough, we can remove randomness from
algorithms that appear to require it. Another example of this kind is testing for the existence
of a perfect matching in a bipartite graph. This problem can be solved by a simple randomized
algorithm. There is also a deterministic algorithm, though considerably more elaborate. (In this
case, the deterministic algorithm was discovered first.)

To give contrasting evidence, here is an example of a problem that can be solved by a simple
randomized polynomial-time algorithm, but for which the best known deterministic algorithm takes
exponential time.

Polynomial Identity Testing (PIT) Input: An arithmetic formula F (x1, ..., xn) with integer
coefficients Problem: Is F identically zero?

An arithmetic formula over the integers is an expression built up from the variables x1, . . . , xn, the
integers, and the arithmetic operations ′+′ and ′×′, for instance:

(x1 + 4× x3 × x4)×
(
(x2 − x3)× (x2 + x3)

)
− 3× x2.

We say that F is identically zero, in short F ≡ 0, if when we expand the formula and carry out all
cancellations we obtain 0.

4

A deterministic algorithm that comes to mind for this problem is to work out the symbolic expansion
of the polynomial and check if everything cancels out. This might take exponential time. A clever
alternative is to carefully choose a set of points (a1, . . . , an) ∈ Zn and evaluate F (a1, . . . , an). If F
does not evaluate to zero, then we can safely answer “no”. But if F always evaluates to zero, it
might either be that F ≡ 0, or maybe F 6≡ 0 but our choice of evaluation points was unlucky and
we always ended up with the zero polynomial. It is not known how to choose evaluation points
deterministically in a manner that rules out the second possibility. However, it won’t be hard to
show that a random choice of points is likely to work.

Theorem 7. PIT ∈ coRP

Proof. Let m be the number of multiplications in F . Consider the following randomized algorithm
for PIT:

A: On input F ,
Choose values a1, . . . , an independently at random from the set {1, . . . , 2m}.
Evaluate b = F (a1, . . . , an) (over the integers).
If b 6= 0, reject; otherwise, accept.

So, if F ≡ 0, this algorithm always accepts it. Now we show that if F 6= 0, then the algorithm
rejects F with probability 1/2. We will need the following theorem.

Theorem 8 (Schwarz-Zippel). For any nonzero polynomial p of degree d over the integers and
every set S ⊆ Z,

Pra1,...,an∼S [p(a1, ..., an) = 0] ≤ d

|S|

In our case, F is a polynomial of degree at most m and S is a set of size 2m, so the algorithm will
detect that F 6≡ 0 with probability at least 1/2.

Proof of Theorem 8. We prove it by induction on n. If n = 1, Pra∈S [p(a) = 0] ≤ d
|S| , that is, there

are at most d values a1, ...ad, which satisfy p(ai) = 0.

Suppose not, then exist distinct a1, ...ad+1, which satisfies p(a1) = ... = p(ad+1) = 0, so
∏d
i=1(x−ai)

divides p and
∏d+1
i=1 (x− ai) also divides p, which conflicts.

If n > 1, we have

P (x1, ..., xn) = xd11 · pd1(x2, ..., xn) + xd1−1
1 · pd1−1(x2, ..., xn) + ...+ p0(x2, ..., xn)

So,

Pr[p(a1, ..., an) = 0] ≤ Pr[Pd1(a2, ..., an) = 0] + Pr[p(a1, . . . , an) = 0 | pd1(a2, ..., an) 6= 0]

By induction hypothesis and case n = 1,

Pr[pd1(a2, ..., an) = 0] ≤ (d− d1)/|S|
Pr[p(a1, . . . , an) = 0 | pd1(a2, ..., an) 6= 0] ≤ d1/|S|.

5

So,

Pr[p(a1, ..., an) = 0] ≤ d

|S|
.

Since we do not know of any subexponential time deterministic algorithm for polynomial identity
testing, it may seem reasonable to conjecture that this problems requires exponential time. But
then a result of Impagliazzo and Wigderson gives us the unlikely consequence that BPP = EXP
— namely all problems in exponential time, including SAT, MIN-FORMULA, etc. can be solved
efficiently using randomness! This seems very unlikely. Thus even though we don’t know of any
subexponential algorithm for polynomial identity testing, theory tells us that such an algorithm is
quite likely to exist. (In fact, theory gives us a very good candidate for such an algorithm, but one
whose correctness relies on reasonable yet unproven complexity assumptions.)

This is an instance of a general result of Impagliazzo and Wigderson, which says that either BPP =
EXP, or every BPP algorithm can be simulated in subexponential time. We won’t prove this
result. One of the principal ingredients in the proof — a statement that is quite interesting by
itself — is the following theorem (that combines work by Nisan and Widgerson and Impagliazzo
and Wigderson):

Theorem 9. Suppose there is a decision problem L such that

• L can be decided by some deterministic Turing Machine in time 2c·n for some c > 0;

• L cannot be decided by any circuit family of size 2δ·n for some δ > 0,

then BPP = P.

Roughly, if there exist a certain kind of problem (computable in time 2O(n)) that is hard for “small”
circuits (of size 2δn), then randomness does not help. The assumption appears quite believable; so
one way of eliminating randomness from algorithms goes by way of proving circuit lower bounds.

