Problem 1

Recall that a search algorithm for a search problem R outputs, on input x, a string y such that $(x, y) \in R$ if such a y exists.
Consider the search problem R defined as follows:
$\left(\left(M, x, z, 1^{t}\right), y\right) \in R$ if $|y| \leq t, z$ is a prefix of y, and M is a deterministic Turing Machine that accepts input (x, y) in at most t steps.
(a) Show that if $L_{R} \in \mathrm{P}$, then there is a polynomial-time search algorithm for R.
(b) Show that if $\mathrm{P}=\mathrm{NP}$, then every NP-search problem has a polynomial-time search algorithm. ${ }^{1}$

Problem 2

Let R be an NP-search problem. Show that there exists a search algorithm A for R with the following properties.

- For every (not necessarily efficient) search algorithm M for R and every input $x \in L$, if M on input x halts within t steps, then A on input x halts within $p_{M}(|x|, t)$ steps, where p_{M} is some polynomial whose coefficients may depend on the description of M but not on x or t.
- For every $x \notin L, A$ on input x halts within $2^{|x|^{O(1)}}$ steps.

Hint: Try running different Turing Machines on input x.

[^0]
Problem 3

Let $s(n)$ be a function such that $s(n)=o\left(2^{n} / n\right)$.
(a) Show that there exists a language L and a string x such that $L \in \operatorname{SIZE}(s(n))$, but $L \cup\{x\} \notin$ $\operatorname{SIZE}(s(n))$.
(b) Using part (a), show that $\operatorname{SIZE}(s(n)) \neq \operatorname{SIZE}(s(n)+O(n))$.
(c) Why can't we use the same argument to "prove" that DTIME $\left(n^{3}\right) \neq \operatorname{DTIME}\left(n^{3}+O(n)\right)$?

Problem 4

In this problem we prove circuit lower bounds for the polynomial hierarchy.
(a) Show that $\Sigma_{4} \nsubseteq \operatorname{SIZE}\left(n^{10}\right)$.
(b) Show that $\Sigma_{2} \nsubseteq \operatorname{SIZE}\left(n^{10}\right)$. (Use part (a).)

[^0]: ${ }^{1}$ The same argument also shows that if NP $\subseteq \mathrm{P} /$ poly, then every NP-search problem can be solved by a circuit family of polynomial size.

