Problem 1

(a) Since $L_{R} \in P$, there is a polynomial-time algorithm A which on input $\left(M, x, z, 1^{t}\right)$ decides if there is a y (with z a prefix of y and $|y| \leq t)$ such that M accepts (x, y) in at most t steps. We are going to construct a polynomial-time search algorithm S for L, using A as a subroutine. Our algoritm S will start with z and by asking A the proper questions will extend it bit by bit to an answer y (if one exists).

```
\(\mathrm{S}\left(M, x, z, 1^{t}\right)\)
    \(p \leftarrow z\)
    if \(\mathrm{A}\left(M, x, p, 1^{t}\right)\) rejects
        then return No
    while true
        do if \(\mathrm{A}\left(M, x, p 0,1^{t}\right)\)
                        then \(p \leftarrow z 0\)
            elseif \(\mathrm{A}\left(M, x, p 1,1^{t}\right)\)
        then \(p \leftarrow p 1\)
            else return \(p\)
```

It is easy to see that before each while loop (and if an answer y exists), it holds that z is an extendable prefix of some y. The algorithm will terminate after at most t iterations.
(b) Let R^{\prime} be any $N P$-search problem described by verifier M, input x, polynomial bound $p(\cdot)$. Then the search problem R (defined as in part (a)) is an $N P$-search problem, and by our assumption that $P=N P$ there must be a polynomial time algorithm for L_{R}. Hence, we can run the search algorithm S for R on input ($M, x, \varepsilon, 1^{p(|x|)}$) (where ε is the empty string).

Problem 2

First note that there is a polynomial-time turing machine V, which on input (x, y) verifies whether y is a valid answer for x or if it is not. Now let M_{1}, M_{2}, \ldots, be an enumeration of turing machines. Our algorithm A on input x will simulate machines $M_{1}, M_{2}, \ldots, M_{n}$ (where $n=|x|$) on x. Since A doesn't know if those machines ever stop, it cannot simulate them sequentially. A will simulate one step of M_{1}, then one of M_{2}, and so on; until it reaches M_{n}, at which point it starts all over again.

In the process of this simulation, when a machine M_{i} halts and outputs a y, our algorithm runs V to see whether $(x, y) \in R$; if the answer is positive it halts and returns y, otherwise it continues with the simulation.

To take care of the case when there is no y such that $(x, y) \in R, A$ runs in parallel an exponential search algorithm S for R. Let the running time of S to be at most $2^{n^{c}}$, for a constant c.

Suppose now, that a search algorithm M for R exists among the machines $M_{1}, M_{2}, \ldots, M_{n}$. In this case, if t is the running time of M, A will simulate at most t steps of machines $M_{1}, M_{2}, \ldots, M_{n}$ until the answer is found. This can be done in $O\left(n t^{2}\right)$ time for the n simulations (the square on t accounts for the simulation overhead) plus an additional n^{c} for the verification.

If M is not among $M_{1}, M_{2}, \ldots, M_{n}$, then the answer will be given (if not from one of these machines) from the exponential search algorithm for R that is run in parallel.
All in all, if M is the k-th machine in the enumeration, we have the following running times. If $x \in L$ then the running time is $O\left(n t^{2}+n^{c}\right)$. (When $n<k$ the running time is $O\left(2^{k^{c}}\right)$, but this is just a constant consumed by the O-notation.) If $x \notin L$ then the running time is $O\left(2^{n^{c}}\right)$, as required.

Problem 3

(a) As it was shown in class, there exist functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by any circuit of size $s(n)$. For each such function f, let $L_{f}^{\prime}=\left\{x \in\{0,1\}^{n} \mid f(x)=1\right\}$. Now order the set of these languages by inclusion, and pick a minimal language L^{\prime}. There has to be at least one element x_{0} in L^{\prime} (otherwise f would be an easy function). Observe that by the minimality of L^{\prime} we know that $L=L^{\prime}-\left\{x_{0}\right\}$ has to be in $\operatorname{SIZE}(s(n))$.
(b) In view of part (a) it is enough to argue that $L \cup\left\{x_{0}\right\}$ is in $\operatorname{SIZE}(s(n)+O(n))$. This is true because we can augment the circuit for L with a small circuit that checks whether $x=x_{0}$.
(c) The same argument for Turing Machines would have to consider functions that take as input a string of any length. This has the effect that there might be no minimal element in the corresponding ordering of the functions.

Problem 4

(a) From problem 3 we know that there are languages in $\operatorname{SIZE}\left(n^{11}\right)$ that are not in $\operatorname{SIZE}\left(n^{10}\right)$. It suffices to show that such a language is in Σ_{4}. Now fix an input length n and consider the smallest circuit C_{n} that computes a function on n bits not computable by any circuit of size n^{10}. We know C_{n} will have size at most n^{11}. Define L on inputs of length n as the set of all x accepted by C_{n}.
Recall that circuits of size s can be described by strings of $O(s \log s)$ bits, and when we say one circuit is smaller than another we mean that it is described by a lexicographically smaller string.
We show that L is in Σ_{4}. For this, observe that $C=C_{n}$ can be uniquely described as the circuit with the following two properties:

- If D is a circuit of size n^{10}, then C and D do not compute the same function.
- If E is a smaller circuit than C, then E computes some function in $\operatorname{SIZE}\left(n^{10}\right)$. Namely, there is a circuit F of size n^{10} such that E and F compute the same function.

Formally, we have that

$$
\begin{aligned}
& x \in L \Longleftrightarrow \exists C \text { of size at most }|x|^{11} \text { such that } \\
& \forall D \text { of size }|x|^{10}, \exists y \text { such that } C(y) \neq D(y) \text { and } \\
& \forall E \text { smaller than } C \\
& \exists F \text { of size }|x|^{10} \text { such that } \forall z, E(z)=F(z) \text { and } \\
& C(x)=1 .
\end{aligned}
$$

By construction, for sufficiently large input lengths n, L is not computable by any circuit of size n^{10}.
(b) Consider the relation of NP and $\operatorname{SIZE}\left(n^{10}\right)$. If $\operatorname{NP} \nsubseteq \operatorname{SIZE}\left(n^{10}\right)$, then clearly $\Sigma_{2} \nsubseteq \operatorname{SIZE}\left(n^{10}\right)$. On the other hand, if $\operatorname{NP} \subseteq \operatorname{SIZE}\left(n^{10}\right)$, then $\Sigma_{2}=\Sigma_{4}$ by the Karp-Lipton theorem. It follows from part (a), that $\Sigma_{2} \nsubseteq \operatorname{SIZE}\left(n^{10}\right)$.

