Problem 1

In this problem you prove an analog of the Karp-Lipton-Sipser theorem for counting problems.
We say that a circuit C solves \#3SAT on n variables if for every 3CNF φ on n variables, $C(\varphi)$ outputs the number of satisfying assignments for φ. We say \#3SAT has a polynomial-size family of circuits if there is a polynomial p such that for every n, there exists a circuit of size $p(n)$ that solves \#3SAT on n variables.
(a) Show that the following language is in coNP:

$$
L=\left\{\left(C, 1^{n}\right): C \text { solves } \# 3 \text { SAT on } n \text { variables }\right\}
$$

(b) Show that if \#3SAT has a polynomial-size family of circuits, then $\mathrm{P}^{\# \mathrm{P}}=\Sigma_{2}$.

Problem 2

Recall that the number of witnesses of an NP relation can be approximately counted by a randomized procedure with access to a SAT oracle. Show that unless the polynomial hierarchy collapses, exact counting is harder than approximate counting: If $\mathrm{P}^{\# S A T} \subseteq \mathrm{BPP}^{\mathrm{SAT}}$ then $\Sigma_{3}=\Pi_{3}$.

Problem 3

Show that there exists a randomized algorithm that given access to a SAT oracle, runs in expected polynomial time and on input a satisfiable $\operatorname{CNF} \varphi$, outputs a uniformly random satisfying assignment for φ. (Namely, if φ has s satisfying assignments a_{1}, \ldots, a_{s}, then the algorithm outputs a_{i} with probability exactly $1 / s$.)

Problem 4

A boolean formula φ is in DNF, or disjunctive normal form, if it is written as a disjunction of conjunctions of literals, for instance

$$
\left(x_{1} \wedge \bar{x}_{3}\right) \vee x_{2} \vee\left(\overline{x_{1}} \wedge x_{2} \wedge x_{4}\right)
$$

Let \#DNF be the problem of counting the number of satisfying assignments of a DNF φ.
(a) Show that \#DNF is \#P-complete.
(b) Show that there exists a randomized algorithm that runs in expected polynomial time and on input a DNF φ, uniformly samples a satisfying assignment for φ. (Therefore \#DNF can be approximated by a randomized algorithm, no oracles involved.)

Hint: Write $\varphi=c_{1} \vee \cdots \vee c_{m}$. Let Ω be the set $\{0,1\}^{n} \times\{1, \ldots, m\}$, where n is the number of variables in φ. Consider the following two subsets of Ω :

$$
\begin{aligned}
& A=\left\{(a, i): \text { Assignment } a \text { satisfies clause } c_{i}\right\} \\
& B=\left\{(a, i): \text { Assignment } a \text { satisfies clause } c_{i} \text { but none of } c_{1}, \ldots, c_{i-1}\right\} .
\end{aligned}
$$

Show how to sample uniformly from A, and use the fact that a substantial fraction of samples in A also fall inside B.

