
198:538 Complexity of Computation Homework 2 Solutions
Rutgers University, Spring 2007

Problem 1

(a) For a formula ϕ(x1, . . . , xn) on n variables x1, . . . , xn and b ∈ {0, 1}k (for k ≤ n), let ϕb be the
formula ϕ(b1, . . . , bk, xk+1, . . . , xn). Since C is given as input, we may simulate in polynomial
time C on input ϕ. In particular, in time polynomial in |C| and n we can check that

C(ϕb) = C(ϕb0) + C(ϕb1).

Observe that if C satisfies this condition for all partial assignments b (and also, when k = n,
C(true) = 1, C(false) = 0), then it must be the case that C(ϕ) = #SAT(ϕ). This is exactly
how we count satisfying assignments recursively. So we have that

(C, 1n) ∈ L⇐⇒ ∀ϕ∀b : C(ϕb) = C(ϕb0) + C(ϕb1) and C(true) = 1 and C(false) = 0.

and L ∈ coNP.

(b) By Toda’s theorem we know that Σ2 ⊆ P#P, so we need only prove that P#P ⊆ Σ2. Clearly,
it suffices to show that P#3SAT ⊆ Σ2. Let L′ ∈ P#3SAT and a PTM M such that

x ∈ L′ ⇐⇒M#3SAT(x) accepts.

Now, since M#3SAT(x) runs in polynomial time for all x, it can only make polynomially many
queries of polynomial length to its oracle. Let C be a circuit of polynomial size that can solve
every instance of #3SAT that M may ask on input x (say M makes queries of length up to
p(|x|)). Then there is a PTM M ′ such that M ′(C, x) = M#3SAT(x), and

x ∈ L′ ⇐⇒ ∃C : (C, 1p(|x|)) ∈ L and M ′(C, x) accepts.

Since the statement after the first existential quantifier is in coNP—by part (a)—then L′ ∈ Σ2.

Problem 2

Suppose P#SAT ⊆ BPPSAT. By the Gacs-Sipser theorem BPP ⊆ NPSAT. This does not directly
imply that BPPSAT ⊆ NPΣ2SAT = Σ3. However, if we take a closer look at the proof of the Gacs-
Sipser theorem, we will see that the the proof still holds when the BPP machine is augmented with
a SAT oracle. (The technical term is that ”the proof relativizes”, and not all known proofs do.)
Therefore, since #SAT is #P -complete, P#P ⊆ Σ3. By Toda’s theorem, for all positive integers k
Σk ⊆ P#P , and the polynomial hierarchy collapses at the third level.

1

2

Problem 3

This question turned out fairly difficult so we will discount it in the grading, but let’s sketch the
solution. Let ϕ be the formula on n variables whose solutions we want to sample and S ⊆ {0, 1}n
the set of its satisfying assignments.

One idea is to choose a hash function h : {0, 1}n → {0, 1}k, hope that there is a unique assignment
x ∈ S such that h(x) = 0 and output this assignment. However if h is pairwise independent this
does not guarantee that x is uniformly distributed in S.

Instead, we use a hash function with fewer bins: Suppose we chose k such the the expected number
of satisfying assignments in every bin is between n2 and 2n2, that is n2 ≤ |S|/2k < 2n2. (If |S| < n2

we can enumerate all the assignments using the NP oracle and sample from there.) We can now
hope that with good probability, there is no bin in which the number of satisfying assignments
exceeds this expectation by more than a factor of two, namely

For all b ∈ {0, 1}k, |{x ∈ S : h(x) = b}| ≤ 4n2. (1)

If this is indeed the case, then we can sample a satisfying assignment as follows: Choose a random
pair (i, b), where 1 ≤ i ≤ 4n2 and b ∈ {0, 1}k. Using the NP oracle, find a list of all the satisfying
assignments x such that h(x) = b. If the list has more than i assignments, output the ith assignment
in the list, otherwise fail. Conditioned on not failing, the assignment we output is uniformly
distributed in S, and since |S| ≥ n2 · 2k, we fail with probability at most 3/4.

How do we know that we have chosen a correct value for k? We don’t, but we can guess one at
random between 0 and n− 1. For a particular value of k, using the NP oracle, we can test whether
condition (1) is violated. If it is, we try a different k. If it isn’t, we sample as above. If the k is not
right, then chances are that either the sampling will fail (if k is too large) or condition (1) will be
violated (if k is too small). But even if by some miracle we manage to output a sample, as long as
condition (1) holds, the sample will be uniformly distributed in S. We keep trying until we choose
the correct k. Each experiment has success probability of at least 1/4n, so the expected running
time of the algorithm is 4n trials.

It remains to show that when n2 ≤ |S|/2k < 2n2, condition (1) holds with probability at least say
1/2. (This adds a factor of two to the running time of the algorithm.) Unfortunately to show (1) we
need more than pairwise independence; we need the hash function family to be n-wise independent,
that is

Pr[h(x1) = y1 and . . . and h(xn) = yn] = Pr[h(x1) = y1] . . .Pr[h(xn) = yn]

for all distinct x1, . . . , xn ∈ {0, 1}n and y1, . . . , yn ∈ {0, 1}k. Just like pairwise independent random
variables satisfy the Chebyshev inequality, n-wise independent variables satisfy the tighter nth
moment inequality (when n is even):

Pr[X1 + · · ·+ Xs > µ + t] ≤ 8 · (µn)n/2 + nn

tn
. (2)

where µ = E[X1 + · · · + Xs]. In our scenario, we fix b ∈ {0, 1}k, set s = |S|, and let Xi be the
indicator of the event that h maps the ith element of S to b. Then µ = s/2k < 2n2, so for t = 2n2

3

we have

Pr[X1 + · · ·+ Xs > 4n2] ≤ 8 · (2n3)n/2 + nn

(2n2)n
≤ 2−n.

for sufficiently large n. Taking a union bound over k it follows that with probability at least 1/2,
the condition holds simultaneously for all b ∈ {0, 1}k.

We sketch a proof of (2). Let X = X1 + · · ·+ Xs. By Markov’s inequality, when n is even,

Pr[X > µ + t] = Pr[(X − µ)n > tn] ≤ E[(X − µ)n]/tn.

The value of the expression E[(X−µ)n] is the same whether the Xi are n-wise independent or fully
independent; so we will assume they are fully independent. Then we have the Chernoff bound

Pr[X − µ ≥ λ] < e−λ2/2µ + e−λ/2

and

E[(X − µ)n] =
∞∑

λ=0

Pr[(X − µ)n ≥ λ]

=
∞∑

λ=0

Pr[X − µ ≥ λ1/n]

<

∞∑
λ=0

e−λ2/n/2µ + e−λ1/n/2

≤
∫ ∞

0
e−λ2/n/2µdλ +

∫ ∞

0
e−λ1/n/2dλ

= n · (2µ)n/2 · (n/2− 1)! + n · 2n · n!

The last step uses a change of variables and the convenient identity
∫∞
0 e−uuk−1du = k!. Using the

Stirling bound for the factorial we derive (2).

Problem 4

(a) We can reduce #CNF—which is known to be #P-complete—to #DNF . Given a formula ϕ
in CNF , we first produce ¬ϕ. Since ¬ϕ is in DNF and has the same number of clauses as
ϕ, this step of the reduction can be done in polynomial time. Then we count the number s of
satisfying assignments for ¬ϕ (using our #DNF oracle) and we return 2n − s. Correctness
follows from the fact that an assignment satisfies ϕ if and only if it doesn’t satisfy ¬ϕ. (We
have shown that #CNF ∈ P#DNF ; this reduction is not parsimonious.)

(b) In this problem we refer to the notation used in the hint. We show first how we can sample
uniformly from A. To do this, it suffices to know the size of A. We proceed by counting how
many assignments satisfy ci, for each i = 1, . . . ,m. This is easy, since we only need to set the
literals in ci to true, and then the rest can take all possible values. Let si denote the number

4

of assignments that satisfy ci; then |A| =
∑m

i=1 si. To sample uniformly from A pick each
pair (a, i) with probability 1/|A|.
Now, those assignments that satisfy a lot of clauses, will be sampled more often than others.
What we really want to do, is sample uniformly from B. Of course, we can’t calculate the
size of B. The algorithm below circumvents this problem.

Uniform-DNF(ϕ)

1 (a, i)← uniform pair from A
2 if (a, i) ∈ B
3 then return a
4 else goto 1

We have already discussed step 1 of the algorithm. Step 2 can also be done in polynomial
time, since we only have to check that a does not satisfy a clause of c1, . . . , ci−1. Next we
need to argue that every assignment is picked with the same probability. To this end, let ta
be the number of clauses satisfied by a. The probability that an assignment a is picked is as
follows.

Pr[a is picked] = Pr[a pair containing a is picked at step 1 and (a, i) ∈ B]
= Pr[a pair containing a is picked at step 1] · Pr[(a, i) ∈ B]

=
ta
|A|
· 1
ta

=
1
|A|

(This is independent of ta).

Thus, each assignment is picked with the same probability. Lastly, we need to show that it
won’t take the algorithm to long before it returns something. This follows from the fact that
each loop of the algorithm terminates with probability at least 1/m (since for any a, ta ≤ m);
thus, the expected running time of the algorithm is at most m times the polynomial time
needed for steps 1 and 2.

