Problem 1

In this problem you will show that if we don't put reasonable restrictions on the class of ensembles, average-case complexity is no easier than worst-case complexity.

- (a) Show that for every $L \notin P$ there exists an ensemble μ_L such that (L, μ_L) does not have polynomial-time heuristic algorithms. (**Hint:** μ_L should give a lot of weight to the "hard" instances of L.)
- (b) Show that there exists an ensemble μ such that for every $L \in NP$, (L, μ) has polynomialtime heuristic algorithms if and only if $L \in P$. (**Hint:** Use the various μ_L from part (a) to construct μ .)

Problem 2

In this problem you investigate the difference between polynomial-time computable and polynomial-time samplable ensembles.

- (a) Let $\{G_n\}$ be a pseudorandom generator. Show that the ensemble μ obtained by choosing a random $X \in \{0,1\}^n$ and outputting $G_n(X)$ is not polynomial-time computable. Thus if pseudorandom generators exist, then PCOMP \neq PSAMP.
- (b) Show that PCOMP = PSAMP if and only if $P = P^{\#P}$. (**Hint:** For the "only if" direction, consider sampling pairs (φ , a), where φ is a DNF and a is a satisfying assignment for φ .)

Problem 3

Show that (L, μ) has an average polynomial-time algorithm if and only if there is an algorithm A with the following properties:

- A takes two inputs x and ε and runs in time poly $(|x|, 1/\varepsilon)$.
- For every input x and every ε , $A(x,\varepsilon)$ outputs either L(x) ("yes" if $x \in L$, "no" if $x \notin L$) or the special symbol "fail".
- For every n and ε ,

$$\Pr[A(x,\varepsilon) = \text{"fail"}] \le \varepsilon.$$

Using this alternative definition of average polynomial-time algorithms, conclude that if (L, μ) reduces to (L', μ') and (L', μ') has an average polynomial-time algorithm, so does (L, μ) .

Problem 4

An undirected graph is *bipartite* if it has no cycles of odd length. We define the decision problem

 $BIPART = \{G : G \text{ is bipartite}\}.$

Assuming that $USTCON \in L$, show that $BIPART \in L$. Recall the decision problem USTCON:

 $USTCON = \{(G, s, t) : s \text{ and } t \text{ are connected in } G\}.$

(Hint: Look at the graph G^2 whose vertices are the same as G and whose edges correspond to paths of length two in G.)