Problem 1

In this problem you will show that if we don't put reasonable restrictions on the class of ensembles, average-case complexity is no easier than worst-case complexity.
(a) Show that for every $L \notin \mathrm{P}$ there exists an ensemble μ_{L} such that $\left(L, \mu_{L}\right)$ does not have polynomial-time heuristic algorithms. (Hint: μ_{L} should give a lot of weight to the "hard" instances of L.)
(b) Show that there exists an ensemble μ such that for every $L \in$ NP, (L, μ) has polynomialtime heuristic algorithms if and only if $L \in \mathrm{P}$. (Hint: Use the various μ_{L} from part (a) to construct μ.)

Problem 2

In this problem you investigate the difference between polynomial-time computable and polynomialtime samplable ensembles.
(a) Let $\left\{G_{n}\right\}$ be a pseudorandom generator. Show that the ensemble μ obtained by choosing a random $X \in\{0,1\}^{n}$ and outputting $G_{n}(X)$ is not polynomial-time computable. Thus if pseudorandom generators exist, then PComp \neq PSAMP.
(b) Show that PComp $=$ PSAMP if and only if $\mathrm{P}=\mathrm{P} \# \mathrm{P}$. (Hint: For the "only if" direction, consider sampling pairs (φ, a), where φ is a DNF and a is a satisfying assignment for φ.)

Problem 3

Show that (L, μ) has an average polynomial-time algorithm if and only if there is an algorithm A with the following properties:

- A takes two inputs x and ε and runs in time poly $(|x|, 1 / \varepsilon)$.
- For every input x and every $\varepsilon, A(x, \varepsilon)$ outputs either $L(x)$ ("yes" if $x \in L$, "no" if $x \notin L$) or the special symbol "fail".
- For every n and ε,

$$
\operatorname{Pr}[A(x, \varepsilon)=" \text { fail" }] \leq \varepsilon .
$$

Using this alternative definition of average polynomial-time algorithms, conclude that if (L, μ) reduces to $\left(L^{\prime}, \mu^{\prime}\right)$ and $\left(L^{\prime}, \mu^{\prime}\right)$ has an average polynomial-time algorithm, so does (L, μ).

Problem 4

An undirected graph is bipartite if it has no cycles of odd length. We define the decision problem $B I P A R T=\{G: G$ is bipartite $\}$.

Assuming that $U S T C O N \in \mathrm{~L}$, show that BIPART $\in \mathrm{L}$. Recall the decision problem USTCON:

$$
U S T C O N=\{(G, s, t): s \text { and } t \text { are connected in } G\} .
$$

(Hint: Look at the graph G^{2} whose vertices are the same as G and whose edges correspond to paths of length two in G.)

