Problem 1

(a) Let M_1, M_2, \ldots be an enumeration of polynomial-time Turing Machines. Since $L \notin P$, for each machine M_i there exist infinitely many x such that M_i fails to solve x correctly for L. The distribution $\mu_{L,n}$ will be designed in a way so that it gives substantial probability to such x. Then if we think of M_i as a heuristic, it will fail with non-negligible probability.

Let's look at a particular instance length n and the first n machines M_1, \ldots, M_n . If the machine M_i fails to solve some x of length n correctly, $\mu_{L,n}$ will assign probability about 1/n to this x. This will ensure that for every machine M_i , a lot of probability will fall on instances that M_i does not solve correctly.

More formally, we have

$$\mu_{L,n}(x) = \begin{cases} p_n, & \text{if } x \text{ is the first string of length } n \text{ such that} \\ & M_i(x; 1/n^2) \neq L(x) \text{ for some } i \leq n; \\ 0, & \text{otherwise.} \end{cases}$$

The number p_n is chosen so that $\mu_{L,n}$ is a probability distribution, namely the probabilities are distributed evenly among all the instances of the first type. Note that $p_n \ge 1/n$ since at most *n* strings are "covered" by nonzero probability in the above definition.

Now, for every potential heuristic algorithm M_i for L, let x^* be the first x of length $n \ge i$ such that $M_i(x^*; 1/n^2) \ne L(x^*)$. But $\mu_{L,n}(x^*) = p_n \ge 1/n$, therefore

$$Pr_{x \sim \mu_{L,n}}[M_i(x; 1/n^2) \neq L(x)] \ge 1/n^2$$

so M_i cannot be a heuristic algorithm for L.

(b) The "if" direction is true for every ensemble μ . For the "only if" part we need to come up with a μ such that if $L \in NP - P$ then (L, μ) doesn't have a polynomial-time heuristic. Let N_1, N_2, \ldots be an enumeration of nondeterministic polynomial-time turing machines. Define μ as follows.

$$\mu_n(x) = \frac{\mu_{L(N_1),n}(x) + \dots + \mu_{L(N_n),n}(x)}{n},$$

where $L(N_i)$ is the language defined by machine N_i and $\mu_{L(N_i),n}$ is defined as in part (a). Now suppose M_i is a potential heuristic algorithm for L. Let x^* be the first string of length $n \ge i$ such that $M_i(x^*, 1/n^2) \ne L(x^*)$. Then $\mu_{L,n}(x^*) \ge 1/n$ and therefore $\mu_n(x^*) \ge 1/n^2$. However,

$$\Pr_{x \sim \mu_n}[M_i(x; 1/n^2) \neq L(x)] \ge 1/n^2$$

so M_i is not a heuristic algorithm for L.

Problem 2

- (a) Suppose, by way of contradiction, that μ is polynomial time computable. Therefore, there is an efficient procedure that on input x computes $\mu_n(x)$. Let ν be the uniform distribution. To distinguish μ from ν , consider the following test $T(\cdot)$. On input x, if $\mu_n(x) > 0$ then output 1, otherwise output 0. Since for at least half the strings we have $\mu_n(x) = 0$, it follows that $|\Pr_{X \sim \{0,1\}^n}[T(G_n(X)) = 1] - \Pr_{Y \sim \{0,1\}^m}[T(Y) = 1]| \ge 1/2$. This contradicts the assumption that G_n is a pseudorandom generator.
- (b) To prove that PCOMP = PSAMP implies $P = P^{\#P}$, recall that there is a randomized algorithm R which given a DNF formula uniformly samples a satisfying assignment in expected polynomial time. Consider now an algorithm that first picks a random formula φ of length n, and then runs R to produce $(\varphi, R(\varphi))$. This algorithm can be viewed as a polynomial-time sampler for pairs (φ, a) (for simplicity assume $|\varphi| = |a| = n$) from the distribution

$$\mu_{2n}(\varphi, a) = \begin{cases} 1/(2^n \cdot \# \text{SAT}(\varphi)), & \text{if } a \text{ is a satisfying assignment for } \varphi; \\ 0, & \text{otherwise;} \end{cases}$$

Under the assumption PCOMP = PSAMP, there is a polynomial-time algorithm that on input (φ, a) computes the value $\mu_{2n}(\varphi, a)$. We can use this algorithm to solve #DNF exactly as follows: On input φ , first find an arbitrary satisfying assignment a for φ (this can be done in linear time), then output the value $1/(2^n \cdot \mu_{2n}(\varphi, a)) = \#SAT(\varphi)$. Since #DNF is #P-complete it follows that $P = P^{\#P}$.

One can prove a statement in the oposite direction if the sampling algorithm S always runs in polynomial time. Then there is a polynomial-time verifier A that takes input x of length n and potential witness r and accepts when $S(1^n, r) \leq x$ (meaning that when the sampling algorithm uses r as its randomness, it outputs a string that is lexicographically at most r). Then

$$\overline{\mu}_n(x) = |\{r, |r| = p(n) : M(x, r) \text{ accepts}\}|/2^{p(n)}$$

where $S(1^n)$ uses p(n) bits of randomness. If $P = P^{\#P}$ this quantity is clearly computable in polynomial time.

Problem 3

Let A' be an average polynomial-time algorithm with running time $t_{A'}(x)$ on input x, which for some constant c satisfies $E_{x \sim \mu_n}[t_{A'}(x)^{1/c}] = O(n)$. By Markov's inequality for every $\varepsilon > 0$ we have

$$\Pr[t_{A'}(x)^{1/c} > O(n/\varepsilon)] < \varepsilon.$$

To construct an algorithm A with the desired properties, we run A' for $O((n/\varepsilon)^c)$ steps, and if it halts we output the answer, otherwise we output "fail". We have

$$\Pr[A(x,\varepsilon) = \text{"fail"}] = \Pr[t_{A'}(x) > O((n/\varepsilon)^c)] = \Pr[t_{A'}(x)^{1/c} > O(n/\varepsilon)] < \varepsilon$$

as desired.

For the converse, suppose that

$$\Pr_{x \sim \mu_n} [A(x;\varepsilon) = "fail"] < (n/\varepsilon)^c$$

for every $\varepsilon > 0$. We use A to construct an average polynomial-time algorithm A' as follows: On input x, first try running A(x; 1/2). This should take care of half the inputs. If A fails, try running A(x; 1/4). This should take care of half the remaining inputs, and so on. More formally,

Let S_k be the set of all inputs of length n that are solved in the kth iteration of this algorithm. Then $\Pr_{x \sim \mu_n}[x \in S_k] \leq 2^{-k+1}$, because iteration k-1 has solved all but a $2^{-(k+1)}$ fraction of inputs. Also, if $x \in S_k$ then the running time $t_{A'}(x)$ is at most $\sum_{i=1}^k ((n \cdot 2^i)^c + O(1)) = O((n \cdot 2^k)^c)$.

A' is an average polynomial-time algorithm since

$$\mathbf{E}_{x \sim \mu_n}[t_{A'}(x)^{1/2c}] = \sum_{k=1}^{\infty} \mathbf{E}_{x \sim \mu_n}[t_{A'}(x)^{1/2c} \mid x \in S_k] \cdot \Pr[x \in S_k] \leq \sum_{k=1}^{\infty} O((n \cdot 2^k)^{c/2c}) \cdot 2^{-k+1} = \sum_{k=1}^{\infty} O(n^{1/2} \cdot 2^{-k/2}) = O(n^{1/2}).$$

Now let R be a reduction from (L, μ) to (L', μ') , and let p(n) be the polynomial associated with R. If A' is an algorithm for (L', μ') , define the algorithm A for (L, μ) as $A(x; \varepsilon) = A'(R(x); \varepsilon/p(n))$. It can be shown (see the proof of theorem 7 in the notes) that $Pr[A(x; \varepsilon) = \text{"fail"}] \leq \varepsilon$.

Problem 4

Observe that a graph G has a cycle of odd length if and only if there is an edge (u, v) for which there is also a path of even length between u and v. Furthermore, there is a path of even length between two nodes $u, v \in V(G)$ if and only if $(G^2, u, v) \in USTCON$. Consider now the following algorithm.

By the above discussion, this algorithm accepts if and only if G is bipartite. The algorithm can also be made to use logarithmic space. The only problem is that we cannot afford to construct G^2 and feed its description to our subroutine for USTCON. However, we can decide if there is a path of length two between two nodes $u, v \in G(V)$, i.e. if (u, v) is an edge in G^2 , just by using the description of G and logarithmic space (check if there is a w such that (u, w) and (w, v) are both edges of G). Hence, every time the subroutine USTCON needs to know if (u, v) is an edge of G^2 , we can answer in logarithmic space.