Problem 1

(a) Let M_{1}, M_{2}, \ldots be an enumeration of polynomial-time Turing Machines. Since $L \notin \mathrm{P}$, for each machine M_{i} there exist infinitely many x such that M_{i} fails to solve x correctly for L. The distribution $\mu_{L, n}$ will be designed in a way so that it gives substantial probability to such x. Then if we think of M_{i} as a heuristic, it will fail with non-negligible probability.
Let's look at a particular instance length n and the first n machines M_{1}, \ldots, M_{n}. If the machine M_{i} fails to solve some x of length n correctly, $\mu_{L, n}$ will assign probability about $1 / n$ to this x. This will ensure that for every machine M_{i}, a lot of probability will fall on instances that M_{i} does not solve correctly.
More formally, we have

$$
\mu_{L, n}(x)= \begin{cases}p_{n}, & \text { if } x \text { is the first string of length } n \text { such that } \\ 0, & M_{i}\left(x ; 1 / n^{2}\right) \neq L(x) \text { for some } i \leq n \\ 0, & \text { otherwise }\end{cases}
$$

The number p_{n} is chosen so that $\mu_{L, n}$ is a probability distribution, namely the probabilities are distributed evenly among all the instances of the first type. Note that $p_{n} \geq 1 / n$ since at most n strings are "covered" by nonzero probability in the above definition.
Now, for every potential heuristic algorithm M_{i} for L, let x^{*} be the first x of length $n \geq i$ such that $M_{i}\left(x^{*} ; 1 / n^{2}\right) \neq L\left(x^{*}\right)$. But $\mu_{L, n}\left(x^{*}\right)=p_{n} \geq 1 / n$, therefore

$$
\operatorname{Pr}_{x \sim \mu_{L, n}}\left[M_{i}\left(x ; 1 / n^{2}\right) \neq L(x)\right] \geq 1 / n^{2}
$$

so M_{i} cannot be a heuristic algorithm for L.
(b) The "if" direction is true for every ensemble μ. For the "only if" part we need to come up with a μ such that if $L \in \mathrm{NP}-\mathrm{P}$ then (L, μ) doesn't have a polynomial-time heuristic. Let N_{1}, N_{2}, \ldots be an enumeration of nondeterministic polynomial-time turing machines. Define μ as follows.

$$
\mu_{n}(x)=\frac{\mu_{L\left(N_{1}\right), n}(x)+\cdots+\mu_{L\left(N_{n}\right), n}(x)}{n},
$$

where $L\left(N_{i}\right)$ is the language defined by machine N_{i} and $\mu_{L\left(N_{i}\right), n}$ is defined as in part (a).
Now suppose M_{i} is a potential heuristic algorithm for L. Let x^{*} be the first string of length $n \geq i$ such that $M_{i}\left(x^{*}, 1 / n^{2}\right) \neq L\left(x^{*}\right)$. Then $\mu_{L, n}\left(x^{*}\right) \geq 1 / n$ and therefore $\mu_{n}\left(x^{*}\right) \geq 1 / n^{2}$. However,

$$
\operatorname{Pr}_{x \sim \mu_{n}}\left[M_{i}\left(x ; 1 / n^{2}\right) \neq L(x)\right] \geq 1 / n^{2}
$$

so M_{i} is not a heuristic algorithm for L.

Problem 2

(a) Suppose, by way of contradiction, that μ is polynomial time computable. Therefore, there is an efficient procedure that on input x computes $\mu_{n}(x)$. Let ν be the uniform distribution. To distinguish μ from ν, consider the following test $T(\cdot)$. On input x, if $\mu_{n}(x)>0$ then output 1, otherwise output 0 . Since for at least half the strings we have $\mu_{n}(x)=0$, it follows that $\left|\operatorname{Pr}_{X \sim\{0,1\}^{n}}\left[T\left(G_{n}(X)\right)=1\right]-\operatorname{Pr}_{Y \sim\{0,1\}^{m}}[T(Y)=1]\right| \geq 1 / 2$. This contradicts the assumption that G_{n} is a pseudorandom generator.
(b) To prove that $\mathrm{PCOMP}=\mathrm{PSAMP}$ implies $\mathrm{P}=\mathrm{P} \# \mathrm{P}$, recall that there is a randomized algorithm R which given a DNF formula uniformly samples a satisfying assignment in expected polynomial time. Consider now an algorithm that first picks a random formula φ of length n, and then runs R to produce $(\varphi, R(\varphi)$). This algorithm can be viewed as a polynomial-time sampler for pairs (φ, a) (for simplicity assume $|\varphi|=|a|=n$) from the distribution

$$
\mu_{2 n}(\varphi, a)= \begin{cases}1 /\left(2^{n} \cdot \# \operatorname{SAT}(\varphi)\right), & \text { if } a \text { is a satisfying assignment for } \varphi ; \\ 0, & \text { otherwise } ;\end{cases}
$$

Under the assumption $\mathrm{PCOMP}=\mathrm{PSAMP}$, there is a polynomial-time algorithm that on input (φ, a) computes the value $\mu_{2 n}(\varphi, a)$. We can use this algorithm to solve \#DNF exactly as follows: On input φ, first find an arbitrary satisfying assignment a for φ (this can be done in linear time), then output the value $1 /\left(2^{n} \cdot \mu_{2 n}(\varphi, a)\right)=\# \operatorname{SAT}(\varphi)$. Since \#DNF is \#Pcomplete it follows that $\mathrm{P}=\mathrm{P}^{\# \mathrm{P}}$.
One can prove a statement in the oposite direction if the sampling algorithm S always runs in polynomial time. Then there is a polynomial-time verifier A that takes input x of length n and potential witness r and accepts when $S\left(1^{n}, r\right) \leq x$ (meaning that when the sampling algorithm uses r as its randomness, it outputs a string that is lexicographically at most r). Then

$$
\bar{\mu}_{n}(x)=\mid\{r,|r|=p(n): M(x, r) \text { accepts }\} \mid / 2^{p(n)} .
$$

where $S\left(1^{n}\right)$ uses $p(n)$ bits of randomness. If $\mathrm{P}=\mathrm{P}^{\# \mathrm{P}}$ this quantity is clearly computable in polynomial time.

Problem 3

Let A^{\prime} be an average polynomial-time algorithm with running time $t_{A^{\prime}}(x)$ on input x, which for some constant c satisfies $E_{x \sim \mu_{n}}\left[t_{A^{\prime}}(x)^{1 / c}\right]=O(n)$. By Markov's inequality for every $\varepsilon>0$ we have

$$
\operatorname{Pr}\left[t_{A^{\prime}}(x)^{1 / c}>O(n / \varepsilon)\right]<\varepsilon .
$$

To construct an algorithm A with the desired properties, we run A^{\prime} for $O\left((n / \varepsilon)^{c}\right)$ steps, and if it halts we output the answer, otherwise we output "fail". We have

$$
\operatorname{Pr}[A(x, \varepsilon)=\text { "fail" }]=\operatorname{Pr}\left[t_{A^{\prime}}(x)>O\left((n / \varepsilon)^{c}\right)\right]=\operatorname{Pr}\left[t_{A^{\prime}}(x)^{1 / c}>O(n / \varepsilon)\right]<\varepsilon
$$

as desired.

For the converse, suppose that

$$
\operatorname{Pr}_{x \sim \mu_{n}}[A(x ; \varepsilon)=" \text { fail" }]<(n / \varepsilon)^{c}
$$

for every $\varepsilon>0$. We use A to construct an average polynomial-time algorithm A^{\prime} as follows: On input x, first try running $A(x ; 1 / 2)$. This should take care of half the inputs. If A fails, try running $A(x ; 1 / 4)$. This should take care of half the remaining inputs, and so on. More formally,

```
\(\mathrm{A}^{\prime}(x)\)
    \(k \leftarrow 0\)
    repeat \(k \leftarrow k+1\)
            answer \(\leftarrow \mathrm{A}\left(x, 2^{-k}\right)\)
            until answer \(\neq\) "fail"
    return answer
```

Let S_{k} be the set of all inputs of length n that are solved in the k th iteration of this algorithm. Then $\operatorname{Pr}_{x \sim \mu_{n}}\left[x \in S_{k}\right] \leq 2^{-k+1}$, because iteration $k-1$ has solved all but a $2^{-(k+1)}$ fraction of inputs. Also, if $x \in S_{k}$ then the running time $t_{A^{\prime}}(x)$ is at most $\sum_{i=1}^{k}\left(\left(n \cdot 2^{i}\right)^{c}+O(1)\right)=O\left(\left(n \cdot 2^{k}\right)^{c}\right)$.
A^{\prime} is an average polynomial-time algorithm since

$$
\begin{aligned}
\mathrm{E}_{x \sim \mu_{n}}\left[t_{A^{\prime}}(x)^{1 / 2 c}\right] & =\sum_{k=1}^{\infty} \mathrm{E}_{x \sim \mu_{n}}\left[t_{A^{\prime}}(x)^{1 / 2 c} \mid x \in S_{k}\right] \cdot \operatorname{Pr}\left[x \in S_{k}\right] \\
& \leq \sum_{k=1}^{\infty} O\left(\left(n \cdot 2^{k}\right)^{c / 2 c}\right) \cdot 2^{-k+1} \\
& =\sum_{k=1}^{\infty} O\left(n^{1 / 2} \cdot 2^{-k / 2}\right)=O\left(n^{1 / 2}\right) .
\end{aligned}
$$

Now let R be a reduction from (L, μ) to $\left(L^{\prime}, \mu^{\prime}\right)$, and let $p(n)$ be the polynomial associated with R. If A^{\prime} is an algorithm for $\left(L^{\prime}, \mu^{\prime}\right)$, define the algorithm A for (L, μ) as $A(x ; \varepsilon)=A^{\prime}(R(x) ; \varepsilon / p(n))$. It can be shown (see the proof of theorem 7 in the notes) that $\operatorname{Pr}[A(x ; \varepsilon)=$ "fail" $] \leq \varepsilon$.

Problem 4

Observe that a graph G has a cycle of odd length if and only if there is an edge (u, v) for which there is also a path of even length between u and v. Furthermore, there is a path of even length between two nodes $u, v \in V(G)$ if and only if $\left(G^{2}, u, v\right) \in U S T C O N$. Consider now the following algorithm.

S(G)
1 for each edge (u, v) in G

then reject

4 accept

By the above discussion, this algorithm accepts if and only if G is bipartite. The algorithm can also be made to use logarithmic space. The only problem is that we cannot afford to construct G^{2} and feed its description to our subroutine for $U S T C O N$. However, we can decide if there is a path of length two between two nodes $u, v \in G(V)$, i.e. if (u, v) is an edge in G^{2}, just by using the description of G and logarithmic space (check if there is a w such that (u, w) and (w, v) are both edges of G). Hence, every time the subroutine $U S T C O N$ needs to know if (u, v) is an edge of G^{2}, we can answer in logarithmic space.

