Problem 1

Our instance checker I first runs the candidate algorithm M on the input matrices A and B to receive some matrix C as an answer. To check that indeed $A B=C$, it generates a random vector $r \in\{0,1\}^{n}$ and then verifies that $A(B r)=C r$; if this is the case it accepts otherwise it outputs "fail". Since multiplication of a matrix by a vector requires $O\left(n^{2}\right)$ time, this verification can be done in $O\left(n^{2} \log n\right)$ time (the $\log n$ term accounts for the time needed to read input bits via random access). For completeness, notice that if $A B=C$ the checker accepts with probability 1. If $A B \neq C$, then the matrix $A B-C$ has at least one nonzero entry, so for at least half the vectors $r \in\{0,1\}^{n},(A B-C) r \neq 0$ and thus $\operatorname{Pr}\left[I^{M}(x) \in\{L(x)\right.$, "fail" $\left.\}\right] \geq 1 / 2$. Repeating the procedure twice gives the desired error rate of $3 / 4$.

Problem 2

(a) As pointed out in the hint, the prover in the interactive protocol for PSPACE languages can be realized by a polynomial space machine. (The verifier in this protocol asks for evaluations of an implicit polynomial; such evaluations can be computed in polynomial space.) Let L be a PSPACE-complete language. Here is a first attempt towards an instance checker for L. The instance checker I simulates the verifier; whenever the verifier wants to query the prover, the instance checker converts the query to an instance of L (this can be done efficiently since L is PSPACE-complete) and queries the oracle on this instance. If at the end of the interaction the verifier in the interactive protocol accepts, so does the instance checker; otherwise the instance checker outputs "fail".
By the completeness of the interactive protocol for PSPACE, it follows that if $x \in L$ and A solves L correctly on all inputs, then $I^{A}(x)=L(x)$ with probability one. However, when $x \notin L$, then $I^{A}(x)=$ "fail" with probability $3 / 4$ for every algorithm A. This is not good because we want $I^{A}(x)=L(x)$ when A is a good algorithm for L.

To get around this problem, we use the fact that PSPACE is closed under complement, so I can run both the interactive protocols for L and for \bar{L}. More precisely, on input x, I does the following:

- Simulate the verifier in the interactive protocol for L, using the oracle as the prover. If the verifier accepts, accept.
- Simulate the verifier in the interactive protocol for \bar{L}, using the oracle as the prover. If the verifier accepts, reject.
- Otherwise, output "fail".

If the oracle A is a good algorithm for L, then $I^{A}(x)$ accepts when $x \in L$ (by completeness of the protocol for L) and rejects when $x \notin L$ (by completeness of tha protocol for \bar{L}). On the other hand, for every algorithm A, if $x \in L$ then the interactive protocol for \bar{L} rejects with probability $\geq 3 / 4$, so $I^{A}(x) \notin\{L(x)$,"fail" $\}$ with probability at most $1 / 4$. Similarly if $x \notin L$ then the interactive protocol for L rejects with probability $\geq 3 / 4$, so $I^{A}(x) \notin\{L(x)$,"fail" $\}$ with probability at most $1 / 4$.
(b) Let $M_{1}, M_{2} \ldots$ be an enumeration of polynomial time Turing machines, and let I be the instance checker for L. By definition, we have that for every A and $x, I^{A}(x) \notin\{L(x)$,"fail" $\}$ with probability at most $1 / 4$. We can make this probability as small as $2^{-n^{c}}$ by running I $2^{O\left(n^{c}\right)}$ times and taking the plurality of the answers. (c is a sufficiently large constant we will specify later.)
Consider the following algorithm A : On input x, simulate in a dovetailing manner $I^{M_{1}}, I^{M_{2}}, \ldots$ (in stage i of the simulation, A runs i steps of $\left.I^{M_{1}}(x), \ldots, I^{M_{i}}(x)\right)$. If at any point some $I^{M_{i}}$ returns an answer other than "fail", A outputs this answer and halts.
Since $L \in$ PSPACE, there exists an algorithm that decides L and runs in exponential time. Suppose this is the algorithm M_{k}. Then $I^{M_{k}}$ also runs in exponential time, so after $2^{|x|^{d}}$ steps (where d is some constant that depends on k but not on x), $A(x)$ will have completed the simulation of $I^{M_{k}}(x)$, and by the completeness of I, will have output an answer with probability 1 . Thus the running time of A on inputs of length n is at most $2^{n^{d}}$.
We choose $c=d+1$. Since in time $2^{n^{d}}$ the algorithm A can make at most $2^{n^{d}}$ calls to I, and for each call to I we have that $\operatorname{Pr}\left[I^{M_{i}}(x) \notin\{L(x)\right.$,"fail" $\left.\}\right] \leq 2^{-n^{c}}$, by a union bound we have that with probability $\geq 3 / 4, I^{M_{i}}(x)$ never outputs $\bar{L}(x)$ in any of the calls made by A, so with probability $\geq 3 / 4 A$ itself never outputs $\bar{L}(x)$.
Assuming this is the case, let M_{i} be an algorithm that decides L. Let x be a sufficiently long input for M_{i}. If $M_{i}(x)$ halts within t steps, then A will have finished simulating $I^{M_{i}}(x)$ within $p_{i}(|x|) \cdot t^{3}$ steps, where p_{i} is some polynomial that depends on i but not on x or t. By completeness of the instance checker, $I^{M_{i}}(x)=L(x)$, so $A(x)$ will also output $L(x)$.

Problem 3

(a) It is not hard to verify that the family of permanent polynomials $\left\{p_{1}, p_{2}, \ldots\right\}$ satisfies the given system of equations. The first equation indicates the permanent expansion by minors: We can write

$$
\begin{aligned}
\operatorname{per}_{n}\left(x_{i j}\right)_{1 \leq i, j \leq n} & =\sum_{\sigma} \prod_{i=1}^{n} x_{i, \sigma i} \\
& =\sum_{k=1}^{n} \sum_{\sigma: \sigma(1)=k} x_{1 k} \cdot \prod_{i=2}^{n} x_{i, \sigma i} \\
& =\sum_{k=1}^{n} \operatorname{per}_{n-1}\left(x_{i j}\right)_{1 \leq i, j \leq n, i \neq 1, j \neq k} .
\end{aligned}
$$

The second equation indicates that if we replace the last column and row of an $n \times n$ matrix by zeros, except $y_{n n}=1$, then we obtain the permanent of an $(n-1) \times(n-1)$ matrix.

$$
\begin{aligned}
\operatorname{per}_{n}\left(y_{i j}\right)_{1 \leq i, j \leq n} & =\sum_{\sigma} \prod_{i=1}^{n} y_{i, \sigma i} \\
& =\sum_{\sigma: \sigma(n)=n} \prod_{i=1}^{n-1} y_{i, \sigma i} \\
& =\operatorname{per}_{n-1}\left(x_{i j}\right)_{1 \leq i, j \leq n-1} .
\end{aligned}
$$

If $\left\{p_{1}, p_{2}, \ldots\right\}$ and $\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right\}$ are two families of polynomials that satisfy the equations, it is immediate by induction on n that we must have $p_{i}=p_{i}^{\prime}$ for all i.
(b) The instance checker I we are going to construct works in three stages. Suppose I is given as input an $n \times n$ matrix x and access to an oracle P.

- In the first stage I runs the local test A^{P} for degree n polynomials, viewing the candidate algorithm P as an oracle providing the value of a polynomial on the queried points. If P passes the local test then with high probability P computes correctly some degree n polynomial on $7 / 8$ fraction of the points. Let p_{n} be such a polynomial. In particular, if P is the permanent polynomial per $_{n}$, then so is p_{n}.
- From p_{n}, we define the polynomials $p_{n-1}, p_{n-2}, \ldots, p_{1}$ via the equation

$$
\begin{equation*}
p_{m-1}\left(x_{i j}\right)_{1 \leq i, j \leq m-1}=p_{m}\left(y_{i j}\right)_{1 \leq i, j \leq m} . \tag{1}
\end{equation*}
$$

We want to check that the polynomials p_{1}, \ldots, p_{n} satisfy the other equation that defines the permanent. To do this we invoke the randomized algorithm for polynomial identity testing on the input

$$
p_{m}\left(x_{i j}\right)_{1 \leq i, j \leq m}-\sum_{k=1}^{m} x_{1 k} \cdot p_{m-1}\left(x_{i j}\right)_{1 \leq i, j \leq m, i \neq 1, j \neq k}
$$

for every m between 1 and n. If any of the tests fail, I outputs "fail". If all of these identities hold, then by part (a) p_{n} must be the permanent polynomial per_{n}.
Recall that the algorithm for polynomial identity testing works by evaluating the polynomial at a random input. To do this, we need to be able to evaluate p_{m} and p_{m-1} at inputs chosen by the identity testing algorithm. Evaluating p_{m} and p_{m-1} at some input in turn reduces to evaluating p_{n} at some other input (by equation (1)). Since p_{n} is $7 / 8$-close to the oracle algorithm P, we can evaluate p_{n} at random inputs by using the reconstruction algorithm for P. (Recall that to evaluate $p_{n}(x)$, this algorithm chooses a random line through x and finds the value $p_{n}(x)$ by looking at values of P at other points on this line.)
If $P=p_{n}=\operatorname{per}_{n}$, then all the identity tests will pass with probability 1 . If $p_{n} \neq$ per_{n}, then at least one of the polynomials tested by the identity testing algorithm is nonzero, and (assuming the reconstruction algorithm works correctly, which happens say with probability $1-O(1 / n))$ the identity testing algorithm detects this with probability $1-n /|\mathbb{F}|=1-O(1 / n)$. Thus at the end of this stage, unless I outputs "fail", we know with high confidence that P is $7 / 8$-close to the permanent polynomial.

- Finally, using the reconstruction algorithm for the permanent, I computes $p_{n}(x)$ using oracle access to P.

