
198:538 Complexity of Computation Lecture 12
Rutgers University, Spring 2007 22 February 2007

1 Samplable distributions

In the last lecture we saw that there is an ensemble of computable distributions ν such that the
distributional version (BH, ν) of the bounded halting problem is complete for the distributional
class (NP,PComp) with respect to average polynomial-time reductions.

The reason we decided to work with polynomial-time computable ensembles is because this was a
rich enough class that includes several ”interesting” ensembles, in particular the uniform one, but
also the ensemble ν that defines our complete distributional problem. However the class PComp
happens to leave out (under reasonable complexity assumptions) an important class of ensembles
that arise out naturally in the study of efficient computation and cryptography.

To explain what these ensembles look like let us go back to our original motivation for the study
of average-case complexity: To determine the complexity of instances of problems that occur ”in
practice” as opposed to ones that might be artificially contrived. What is a reasonable model for
instances ”in practice”? From the standpoint of computational complexity, if these instances are
to be found anywhere they must have been generated by some computationally efficient entity (be
it a machine, nature, or a person), possibly with a source of randomness at its disposal.

A randomized algorithm that generates candidate instances for our average-case algorithm is called
a sampler. Distributions that describe the output of a sampler are called samplable.

Definition 1. An ensemble of distributions µ is polynomial-time samplable if there is an expected
polynomial-time randomized algorithm S that, on inputs of the form 1n, outputs each x in {0, 1}n

with probability exactly µn(x).

We denote the class of polynomial-time samplable ensembles by PSamp, and the class of corre-
sponding distributional problems in NP by (NP,PSamp).

Every polynomial-time computable distribution is also polynomial-time samplable. However, the
converse is not true unless P#P = P, and in this lecture we will see an important example of
ensembles that are polynomial-time samplable but unlikely to be polynomial-time computable.

Does the distributional class (NP,PSamp) contain harder problems than (NP,PComp)? Not so
if we allow the use of randomized algorithms or circuits. We won’t give formal definitions of
these computational models in the average case. Impagliazzo and Levin show that if (BH, ν) has
randomized heuristics, then every problem in (NP,PSamp) also has randomized heuristics. They
also show that if (BH, ν) has randomized average polynomial-time algorithms, then every problem
in (NP,PSamp) also has randomized average polynomial-time algorithms.

1

2

2 One-way functions

So far we have only looked at decision problems in distributional NP. Just as in worst-case com-
plexity, we can also consider search problems. An (NP,PSamp) search problem is specified by an
NP-relation R and a polynomial-time samplable ensemble µ. For ”worst-case” NP, we saw that
if P = NP then we can also solve all NP-search problems. An analogous statement holds in the
average-case setting: For every (NP,PSamp) search problem (R,µ) there is a decision problem
(L, µ′) ∈ (NP,PSamp) so that if (L, µ′) has efficient randomized heuristics, so does (R,µ). The
same holds for randomized average polynomial-time algorithms.

There is a special kind of search problem in distributional NP that plays a central role in the theory
of cryptography. This is the problem of inverting a candidate ”one-way” function.

Definition 2. A family of functions fn : {0, 1}n → {0, 1}n is one-way if the following two conditions
hold:

• There is a polynomial-time algorithm that on input x of length n outputs fn(x).

• For every polynomial-size circuit family C1, C2, . . . , every polynomial p, and large enough n,

Pr[fn(Cn(fn(X))) = fn(X)] < 1/p(n),

where the probability is over X chosen uniformly from the set {0, 1}n.

What does this mean? Let us think of the family {fn} as a single function f from {0, 1}∗ to {0, 1}∗.
The first condition says that f can be computed in polynomial time. To understand the second
condition, let us imagine the following scenario: Suppose I hold some ”secret” value x, I give you
the value y = f(x), and ask you to guess what my secret is. This might be difficult for you to do
for the simple reason that there are many possible secrets x′ that map to the same y. So instead
of requiring you to guess my secret x, you win if you can come up with any x′ such that f(x′) = y.
The second condition says that if my secret x was random, and if your secret-guessing procedure
is efficient (in this definition, efficient means it can be implemented as a polynomial-size circuit
family), then you cannot succeed in guessing x′ with any inverse-polynomial probability. So the
function f hides the secret x in a very strong sense.

The second condition in the definition of ”one-way” in particular says that the pair (R,µ), where
R is the NP-search problem ”Given y, find x such that fn(x) = y” does not have heuristic search
algorithms. So to have one-way functions, it must at least be the case that (NP,PSamp) has
problems that are intractable for heuristic search.

There are several examples of function families that are believed to be one way. One example is

fn(x1, y1, . . . , xm, ym) = (x1y1, . . . , xmym)

where x1, y1, . . . , xm, ym are integers represented by strings of n1/4/2 bits each, m = n3/4, and xiyi

is the product of xi and yi.

3

3 Pseudo-random generators

Suppose you hold a box that produces random samples of length n from either the distribution µn,
or the uniform distribution. Can you tell which is the case?

Of course you can never know for sure: Maybe the box produces a sample that is uniformly random
most of the time, except that with some very small probability it outputs the string 1n. In this
case, the distribution µn is very ”close” to the uniform distribution; the interesting question to ask
is what happens when µn is sufficiently ”far” from uniform.

To make this precise we need to define a notion of ”distance” between distributions.

Definition 3. The statistical distribution between two probability distributions µn and νn on {0, 1}n

is the quantity.
1
2
·

∑
x∈{0,1}n

|µn(x)− νn(x)|.

This is always a number in the range [0, 1]. It equals zero when the two distributions are the same:
Given a sample x, there is no way of telling which distribution it came from. It equals one when
µn and νn have disjoint support: Given any sample x, there is only one distribution that it could
have come from.

These two extremes illustrate a universal principle: The statistical distance between µn and νn is
ε if and only if there is a ”test” that can tell whether a sample came from µn or from νn with
confidence at least ε.

Lemma 4. The statistical distance between µn and νn equals ε if and only if there exists a function
T : {0, 1}n → {0, 1} such that∣∣ Pr

X∼µn

[T (X) = 1]− Pr
X∼νn

[T (X) = 1]
∣∣ = ε.

The function T here plays of the role of a ”statistical test”: It takes a sample x and classifies it as
originating either from µn (T (x) = 1) or from νn (T (x) = 0). The lemma implies that if µn and νn

are far in statistical distance, then T has a good chance of telling them apart.

Does this intuition carry in the computationally efficient setting? More precisely, suppose the
above box again generates samples either from µn or from the uniform distribution, but now µn is
efficiently samplable. Is there an efficient test that can tell which of these is the case?

It turns out that if one-way functions exist, then the answer is ”no”, even if µn is very far from
uniform in statistical distance. To prove this we introduce an important object, the pseudorandom
generator.

Definition 5. A family of functions Gn : {0, 1}n → {0, 1}m(n), where m(n) > n, is a pseudorandom
generator if the following two conditions hold:

• There is a polynomial-time algorithm that, on input x of length n, outputs Gn(x).

4

• (Computational indistinguishability) For every polynomial-size circuit family C1, C2, . . . , ev-
ery polynomial p and sufficiently large n,∣∣ Pr

X∼{0,1}n
[Cm(n)(Gn(X)) = 1]− Pr

Y ∼{0,1}n+1
[Cm(n)(Y) = 1]

∣∣ < 1/p(n).

The larger the output length m(n) is, the harder it is to construct a pseudorandom generator, but
even the case m(n) = n + 1 is very interesting.

The second condition says this: Take a random n-bit string, apply Gn to it, and call the resulting
distribution µm. Let νm be the uniform distribution on m bits. An efficient algorithm cannot tell
whether a sample came from µm or νm. However, at least half the samples y of νm are not even in
the range of Gn, so the statistical distance between µm and νm is at least 1/2.

Lemma 6. Every pseudorandom generator is a one-way function.

Proof. Suppose we have a family of circuits C1, . . . that inverts Gn as a family of one-way functions,
namely

Pr
X∼{0,1}n

[Gn(Cm(Gn(X))) = Gn(X)] > 1/p(n)

consider the following ”distinguisher” C ′
n+1: On input y, output 1 when Gn(Cm(y)) = y. Then

Pr
X∼{0,1}n

[C ′
m(Gn(X))) = 1] > 1/p(n).

Now consider a y such that C ′
m(y) = 1. This y is a possible output of Gn, so

Pr
X∼{0,1}n

[Gn(X) = y] ≥ 2−n = 2m−n Pr
Y ∼{0,1}m

[Y = y]

Summing over all such y, we have

Pr
X∼{0,1}n

[C ′
m(Gn(X)) = 1] ≥ 2m−n Pr

Y ∼{0,1}m
[C ′

m(Y) = 1]

therefore
Pr

X∼{0,1}n
[C ′

m(Gn(X)) = 1]− Pr
Y ∼{0,1}m

[C ′
m(Y) = 1] > (1− 2−m+n)p(n).

The opposite is not true in general, but

Theorem 7. If one-way functions exist, then for every polynomial m(n) > n, there exist pseudo-
random generators with output length m(n).

Next time we will prove a weaker version of this.

The distribution µm obtained by evaluating a pseudorandom generator Gn on a uniformly random
input x is clearly polynomial-time samplable, but it it cannot be polynomial-time computable.

5

4 Derandomization

A pseudorandom generator takes a random n-bit string and turns it into an n + 1 bit string that
looks random to every sufficiently small circuit. This circuit may in particular model the operation
of a randomized algorithm. This suggests that a pseudorandom generator can be used to reduce
the amount of randomness used by randomized algorithms.

Theorem 8. If one-way functions exist, then for every ε > 0, BPP ⊆ DTIME(O(2nε
)).

Proof. Let L ∈ BPP, and M be the polynomial-time Turing Machine for L; that is, on input (x, r),
where |r| = p(|x|), we have that

Pr
r

[M(x, r) 6= L(x)] ≤ 1/3.

Take a pseudorandom generator G that stretches an input of size nε/2 to an output of size p(n).
Consider the machine M ′ that, on input (x, r′), where |r′| = nε/2, first applies the generator to r′

to obtain G(r′) then outputs (x,G(r′)). We claim that for all sufficiently large x,

Pr
r′

[M ′(x, r′) 6= L(x)] ≤ 5/12.

If this were not the case, then there are infinitely many x such that

Pr
r′

[M(x, G(r′)) 6= L(x)]− Pr
r

[M(x, r) 6= L(x)] > 1/12.

For each such x, consider the polynomial-size distinguishing circuit Cx that on input y, outputs
C(x, y)⊕ L(x). Then

Pr
r′

[Cx(G(r′)) = 1]− Pr
r

[Cx(r) = 1] > 1/12

contradicting the fact that G(r′) and r are computationally indistinguishable.

Now that we have M ′, we can compute L(x) by simulating M ′(x, r′) deterministically for all 2nε/2

possible values of r′. The running time of the simulation is poly(n) · 2nε/2
= O(2nε

).

