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Suppose you have an undirected graph G on n vertices and a particle sits at vertex s. The particle
takes a random walk on the graph: At each step, it picks one of its neighbors at random and moves
to that vertex. How long will it take for the particle to reach a random vertex in the graph?

The answer to this question depends a lot on the shape of G, and we will see what kinds of graphs
are ”the best” in this respect. These graphs are called expanders.

We will assume that the graph G is d-regular, that is every vertex has the same degree d. We will
think of d as being much smaller than the number of vertices.

1 Some intuition

Let’s think of finding a good G as an engineering problem: We want to design a graph G so that
starting from any vertex s, we can reach a random vertex as soon as possible. It seems a good idea
to make as many vertices of G reachable using short walks out of s. This suggests that G should
look like a tree rooted at s.

If we start as s, very quickly (after about logd n steps) we will find the particle near the leaves of
the tree. However, the particle is unlikely to stick at any particular leaf because there is only one
path leading to it. A random walk on the tree favors the interior vertices, so the vertex at which
the particle ends up won’t look random.

In some sense, this is a bit unfair because the leaves have degree one, and the graph is not d-regular.
We can ”connect up” the leaves in some way so as to make the graph be d-regular. Once we do
this, it seems plausible that after enough steps the vertex where the particle sits will indeed be
uniform (and this is in fact the case), but also that a random vertex is reachable from s rather
quickly (because in a tree, paths starting from s ”expand out” very quickly).

However, in the end there is nothing special about s, and what we want in some way is that if we
choose any vertex as the root, from the perspective of that vertex the graph looks a lot like a tree.

To be a bit more quantitative, if we start at s, even in the ideal case of a tree, we need just Ω(log n)
steps out of s to ”cover” all the possible vertices in G. So we cannot hope to end up at a random
vertex of G before we have completed at least Ω(log n) steps. Can we do so in O(log n) steps no
matter at which vertex s we started?

Here is another way to look at the problem. Let S be an arbitrary set containing about half the
vertices in the graph and also containing s. If we aim at reaching a random vertex quickly, then
the particle better have a good chance of ”escaping” the set S fairly soon.
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2 Random walks

Throughout this lecture, we will use G to denote the graph in question, n for the number of vertices
of G, and we will assume that G is d-regular, with d ≥ 3. In addition, we will assume that there is
a loop at every vertex of G, that is (u, u) is an edge of G for every vertex u.

A random walk on G is a sequence of probability distributions p0,p1, . . . on the vertices of G, with
the following interpretation: At each step t, pt

u is the probability of ending up at vertex u after i
steps of the walk. Initially, we have p0 assign probability 1 to vertex s, and probability 0 to all the
other vertices. The distribution pt+1 can be calculated from pt via the formula

pt+1
u =

∑
v:(v, u) is an edge

1
d
· pt

v. (1)

If we let t grow very large, what does the distribution pt look like? That is, after we have walked
for a long time, where do we expect to land? It seems reasonable that we should be at a random
vertex of the graph — that is, be at every vertex v with probability 1/n, and this is indeed the
case. We sketch an informal argument. First, it is easy to see that if at any point in time we reach
a uniformly random vertex, then after one step of the walk we are again at a uniformly random
vertex; that is, if pt equals the uniform distribution u, then so does pt+1.

But is it not possible that starting from some vertex s, after many steps we reach not a uniform
vertex but a vertex following some other distribution u′? Consider the following two scenarios: In
scenario 1, our particle (let’s call it particle 1) starts at s, and in scenario 2 our particle (let’s call
it particle 2) starts at a uniformly random vertex. Now we claim that if we observe the position
of the particle at some very large time t, the two scenarios look exactly alike! This is because at
some point in time before t, particle 1 and particle 2 must surely have landed at the same vertex
— as t tends to infinity, the probability of this event tends to one1 — after which they become
indistinguishable. Since the position of particle 2 is uniformly random at every step, the position
of particle 1 must also eventually become uniformly random.

There is a way to make this argument precise, but instead of pursuing this let’s immediately turn
to the question of interest: How soon does it take until the random walk starting from s becomes
close to uniform? To answer this we must first introduce a ”uniformity measure” for probability
distributions. We already saw such a measure, namely statistical distance, but here we will look at
another, more convenient quantity: The `2 norm. The `2 norm of a vector v is the quantity

‖v‖ =
(∑

i

v2
i

)1/2

and the `2 distance between two vectors v and v′ is the `2 norm of v − v′. We will think of
probability distributions as vectors in Rn (with one entry for each vertex in the graph), and we will
say that two distributions p and p′ are ε-close (in `2 distance) if ‖p− p′‖ ≤ ε.

1This is the Borel-Cantelli lemma in probability: Informally, if an event can ever happen, it will eventually happen.
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3 Adjacency matrix and eigenvalues

We now introduce some algebraic tools that happen to be extremely useful in understanding this
problem.

The (normalized) adjacency matrix of G is an n× n matrix A defined as follows:

Au,v =

{
1/d, if (u, v) is an edge of G

0, otherwise.

This matrix is symmetric and the entries in each row add up to one. Using A, we can write equation
1 in matrix form as pt+1 = Apt (we think of pt as column vectors) and so we immediately obtain
that pt = Atp0.

It turns out that the eigenvalues and eigenvectors of A play a significant role in determining the
behavior of random walks on G. Recall that an eigenvalue-eigenvector pair is a complex number
λ and a vector v such that Av = λv. It is a basic theorem in linear algebra that symmetric
matrices have an orthonormal basis of eigenvectors with real eigenvalues. Let’s denote these pairs
by (λ1,v1), . . . , (λn,vn) where λ1 ≥ λ2 ≥ ... ≥ λn. (Some of the λi may be negative.)

What is the meaning of this? Initially the position of our particle is determined by the distribution
p0. Since the vectors v1, . . . ,vn form an orthonormal basis we can decompose p0 in the form

p0 = α1v1 + · · ·+ αnvn

where αi = 〈p0,vi〉 and α2
1 + · · ·+ α2

n = 1.

After one step of the random walk, the distribution becomes

p1 = Ap0 = α1Av1 + · · ·+ αnAvn = α1λ1v1 + · · ·+ αnλnvn

and after t steps
pt = Atp0 = α1λ

t
1v1 + · · ·+ αnλt

nvn. (2)

Let’s think of what happens when t becomes large. We will assume the values αi are nonzero since
the initial position of the particle can be arbitrary.2 Eventually the right hand side of the expression
will be dominated by the term in which λi has largest absolute value; this is either |λ1| or |λn|. This
absolute value cannot exceed 1, because pt would then become very large, but its norm is bounded
since it is a probability distribution. Similarly, the absolute value cannot be less than 1 because
then pt would become very small when t gets large. Also, we cannot have λn = −1 because then
pt would oscillate when t is large, and we know it converges to the uniform distribution u.

Therefore, it must be the case that λ1 = 1, and

max{|λi| : 2 ≤ i ≤ n} = max(λ2,−λn) ≤ 1.

2This is not quite right: The correct way to say it is that for every index i there exists an initial position for the
particle that makes αi 6= 0.
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The quantity on the left side is denoted by λ = λ(G) and plays a very important role because of
the following. First, note that Au = λ1u, so the eigenvector v1 associated to λ1 = 1 equals

√
n ·u.

Now from equation 2 we have that

‖pt − α1v1‖2 = α2
2λ

2t
2 + · · ·+ α2

nλ2t
n ≤ λ2t.

The left hand side has a natural interpretation. Recall that α1 = 〈p0,v1〉 = 1/
√

n, so α1v1 equals
the uniform distribution u. Thus λt measures how close pt gets to the uniform distribution after t
steps of the walk: ‖pt−u‖ ≤ λt. Another way of saying this is that λ determines the rate at which
pt converges to the uniform distribution: The smaller λ is, the faster we will get to a uniformly
random vertex.

4 Expanders

So how small can λ get? Let us first see that no matter what the graph looks like, λ can never
get too small. For this, let’s picture a random walk on an arbitrary graph starting at an arbitrary
vertex s. Notice that after t steps of the walk, the potential number of vertices that could have
been reached from s never exceeds dt+1; there are at most this many vertices at distance ≤ t from
s. So even when t = logd n − 2, less than half of the vertices of the random walk are reachable.
Therefore the distribution pt must assign probability zero to the other half vertices, and

λt ≥ ‖pt − u‖ ≥
(
n/2 · (0− 1/n)2

)1/2 = 1/
√

2n.

It follows that λ = Ω(1/
√

d). Thus when the degree is constant and the number of vertices grows,
λ is bounded away from zero by some constant. Graphs that attain the smallest possible value of
λ are called Ramanujan graphs.

For our purposes, it will be enough to consider graphs for which as n grows, λ stays bounded away
from one. If this is the case, then after only t = Θ(log n) steps of the random walk, we have that

‖pt − u‖ ≤ λΘ(log n) = n−Θ(1)

so pt gets very close to the uniform distribution, and in fact all vertices of G are reached with
probability Θ(1/n).

A family of graphs {Gn}, where Gn has n vertices and is d-regular, is called an expander family if
there is a constant ε > 0 such that λ(Gn) ≤ 1− ε. There are several examples of expander families,
some of which are very simple to describe, but proving that a family of graphs is expanding is fairly
difficult and we won’t do so here.

For example, the following family of 4-regular graphs is expanding: For every prime number p,
think of the vertices of Gp as elements of the field Fp. For every x ∈ Fp, the edges going out of x
are (x, x− 1), (x, x), (x, x + 1), (x, x−1) where all operations are over Fp.
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5 The expander mixing lemma

Now let’s revisit one of the initial questions: Given a set of vertices S, how long will it take for the
particle to escape S in the random walk? There are several ways to formalize this question, and
the following one turns out to be particularly nice. Suppose that the particle starts at a uniformly
random vertex in S. Then what is the probability it ends up outside S after t steps of the walk?

Let’s start with t = 1. Then we ask: Choose a random vertex in S, and a random neighbor. What
is the probability that the neighbor is in S? Up to normalization, this is the same as asking the
following: What is the probability that a random edge of G crosses the cut (S, S)?

Using vectors and matrices, this probability can be expressed conveniently as follows. Let s denote
the indicator vector of S, namely the vector that assigns value 1 to every vertex in S and 0 to the
other vertices. Similarly we define s for S. Then the expression d · 〈As, s〉 counts the number of
edges in the cut (S, S), so a probability that a random edge crosses this cut from S to S is exactly
〈As, s〉/n.

To bound this expression, we reason as follows. The fact that random walks on expanders converge
quickly to the uniform distribution says that, in some sense, an expander is a good approximation of
a complete graph: In a complete graph (with a loop around every vertex), the uniform distribution
is reached after one step of the random walk, no matter where we start from. In general, an
expander cannot do this because it has bounded degree, but in certain situations we can think of
an expander graph as a complete graph ”plus” some error.

This viewpoint works well for bounding the expression 〈As, s〉. We want to think of the adjacency
matrix A of G as representing the adjacency martix J of the complete graph (all the entries of J
have value 1/n) plus some ”error matrix” C. We write A = J + C, and

〈As, s〉 = 〈Js, s〉+ 〈Cs, s〉

so that
|〈As, s〉 − 〈Js, s〉| = |〈Cs, s〉| ≤ ‖Cs‖ · ‖s‖. (3)

Two of the entries in this expression can be calculated directly: 〈Js, s〉 = |S| · |S|/n and ‖s‖2 = |S|.
It remains to bound the term ‖Cs‖.

Claim 1. For every vector v, ‖Cv‖ ≤ λ‖v‖.

Proof. We can assume that the entries of v add up to one because both sides can be scaled accord-
ingly. We write v in the basis v1, . . . ,vn as

v = α1v1 + · · ·+ αnvn.

Then α1v1 = 〈v,v1〉v1 = u — the uniform distribution, and

Cu = Au− Ju = u− u = 0.

Also,
C(v − u) = A(v − u)− J(v − u).
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The second term vanishes because

J(v − u) = Jv − Ju = u− u = 0.

So, we have that

Cv = Cu + C(v − u) = A(v − α1v1) = λ2α2v2 + · · ·+ λnαnvn

and therefore
‖Cv‖2 = λ2

2α
2
2 + · · ·+ λ2

nα2
n ≤ λ2‖v‖2.

Applying the claim to equation 3, we obtain the following important theorem.

Theorem 2 (Expander mixing lemma). For every graph G and every cut (S, S),∣∣∣Predge (u, v)[u ∈ S and v ∈ S]− |S|
n

|S|
n

∣∣∣ ≤ λ(G)
√

|S|
n

|S|
n .

When λ(G) is small, this expression says that the probability that a random edge crosses the cut
(S, S) can be approximated with the probability that two independently chosen vertices u and v
fall on opposing sides of the cut. The error term will be relatively small as long as the sets S and
S are not too small.

The expander mixing lemma answers the question of how likely the particle is to cross a cut in one
step of the random walk. How about t steps? For this, let’s look at the graph Gt, which has the
same vertices as v and has an edge for every path of length t in G. This may result in multiple
edges, so in general Gt will be a multigraph of degree dt; but everything we have done in this lecture
applies to multigraphs as well. In particular, λ(Gt) = λ(G)t, so as t becomes larger, λ(Gt) becomes
very small. Thus if we start with an expander, after t = O(log 1/δ) steps λ(Gt) ≤ δ, and then the
expander mixing lemma tells us that the probability that a random t-step path in G crosses the
cut S, S is at least

Predge (u, v) in Gt [u ∈ S and v ∈ S] ≥ |S|
n

|S|
n − δ

√
|S|
n

|S|
n .

If |S| = |S| = n/2, this implies
Pr[v ∈ S | u ∈ S] ≥ 1/2− δ

which is about as large as it can be — even in a complete graph the probability of crossing from S
to S is 1/2.

What happens when the set S is small? Then the expander mixing lemma does not give a useful
bound on the probability of crossing the cut (S, S). However using a different proof one can show
the following.

Theorem 3. For every graph G and every cut (S, S) where |S| ≤ n/2,

Predge (u, v)[v ∈ S | u ∈ S] ≥ 1− λ

2
.


