
CSC 3130: Formal Languages and Automata Theory Lecture 16
The Chinese University of Hong Kong, Fall 2009 Andrej Bogdanov

The Church-Turing thesis states that the Turing Machine is as capable as any realistic model of
computation. So we would expect it to perform the same tasks that a real computer can do.

In real computer architectures, the control component is embedded in the central processing unit, or
CPU. The computer has an instruction memory that stores the program being executed (written in
machine language) and data memory, which is a vast array of data. In addition to these memories,
the CPU contains a small number of registers to store values. One of these registers, the program
counter is special: It is used to record the current line of the program.

In its simplest form, the computer operates as follows. The execution of a program proceeds in
uniform time increments, which are signaled by an external device called the clock. Before every
clock tick, the CPU looks at the program counter and loads the current instruction from instruction
memory. A special part of the CPU, called the arithmetic and logical unit, or ALU, is in charge
of executing the instruction. As the clock ticks, the instruction is executed. This execution may
affect the contents of various registers or some slot in the memory. Typically, after the instruction
is executed, the program counter is incremented to point to the next instruction in the program,
although there are special instructions that can change the course of the program.

Real computer architectures are more complicated than this. They also have to accommodate
external devices, such as keyboards, hard drives, screens, and so on. Hardware engineers also
attempt to optimize efficiency via more sophisticated designs. Various tricks, such as pipelining,
are used to leverage the fact that some instructions take longer time to execute than others. Some
computers have parallel processors which allow them to execute several instructions at a time. These
are all improvements that play an important role in the practice of computer design. However, as
a first approximation, the model we describe here is a fair representation of how computers work.

1 Random access machines

Our model of a computer will be the random access machine. This machine consists of the following
components:

• A finite (small) number of registers R0, R1, . . . , Rm−1,m ≥ 1, which take integer values.

• A program counter PC, which takes a non-negative integer value.

• A memory M : This is an infinite array M(0),M(1), . . . , where each memory cell M(k) takes
an integer value.

• A program P : This is a finite sequence of instructions described in Table 1.

1

2

instruction meaning description
load n R0 := n Put the value n into R0

load Rk R0 := Rk Copy the value of Rk into R0

store Rk Rk := R0 Copy the value of R0 into Rk

read Rk R0 := M [Rk] Copy the value at memory location Rk into R0

write Rk M [Rk] := R0 Copy the value of R0 into memory location Rk

add n R0 := R0 + n Add the value n to R0

add Rk R0 := R0 +Rk Add the value of Rk into R0

mult Rk R0 := R0 ×Rk Multiply the value of Rk into R0

jump n PC := n Set the program counter to n
jzero n if R0 = 0 then PC := n Set the program counter to n, if R0 is zero
jpos n if R0 > 0 then PC := n Set the program counter to n, if R0 is positive
accept Accept
reject Reject

Table 1: The instruction set of a Random Access Machine.

Most of these instructions are quite standard. Variants of them exist in virtually every computer
architecture. The only exception are the two special instructions, which we call accept and reject,
which are not useful for real computers. The reason we added them is because we want to compare
our random access machine to the Turing Machine. Since the goal of the Turing Machine is to
accept or reject its input, in order to compare the two models properly, we have to find a way to
say what it means for a Random Access Machine to accept or reject its input. We will do this by
executing these special commands.

The other issue we need to settle on before we can compare Turing Machines and Random Access
Machines is how we are going to give the machine an input to work on. In practice, computers
get their input from external devices, like keyboards, touchscreens, scanners, the internet, and
so on. However we do not have any provision for attaching input devices to the Random Access
Machine. What happens on a computer when, say, you type something on your keyboard? Usually,
computers goes into a special mode where the CPU execution is interrupted and the keyboard input
is copied into memory before the CPU resumes its execution. So for our random access machine,
it is reasonable to assume that before we start execution, the input will already be present in
memory. For instance, if the input is k symbols long, we will assume it is present in the first k
memory locations M(0),M(1), . . . ,M(k − 1).

One more technicality concerns the alphabet. The Turing Machine works with an arbitrary alphabet
Γ, while the Random Access Machine has no such alphabet; it can only work with integers. However
we can represent symbols in Γ easily using integers in the set {0, . . . , |Γ| − 1}. By convention, we
will use the integer 0 to represent the blank tape symbol of the Turing Machine.

To summarize the previous points, here is how an execution of the Random Access Machine pro-
ceeds:

1. Initially, the input x ∈ Σ∗ is loaded in the first k cells of the memory M(0), . . . ,M(k − 1),
where k is the length of x. The registers R1, . . . , Rm, program counter PC, and the other

3

memory cells M(k),M(k + 1), . . . are initialized to the value 0.

2. At each step of the execution, the Random Access Machine executes the program line pointed
to by the program counter PC. After executing the instruction, the value of PC is incre-
mented by 1, unless the instruction is jump, jzero, jpos, accept, or reject. If the instruction
is jzero or jpos and the condition is not satisfied, PC is also incremented by 1.

3. If the current instruction is accept, the Random Access Machine accepts and halts. If the
current instruction is reject, the Random Access Machine rejects and halts.

2 Simulating a Turing Machine on a Random Access Machine

Now we will argue that the Random Access Machine can do at least what a Turing Machine can
do. This should not be very surprising, because the Turing Machine is a very primitive computer.
Surely we expect the Random Access Machine, which represents a more realistic computer, to be
able to do whatever a Turing Machine can do.

To explain why this is the case, we will outline how to do a simulation of any Turing Machine on
some Random Access Machine. To do this, we have to give a way to represent the configuration of
the Turing Machine (its internal state, its tape contents, and the position of its head) on a Random
Access Machine. Then we have to show how to simulate each step of the Turing Machine on the
Random Access Machine in a way that preserves the representation of this configuration.

There are various ways to represent the configuration of a Turing Machine on a RAM. We can do
as follows. The tape of the Turing Machine will be represented in the memory of the RAM, so that
memory cell M(i) contains the contents of the ith location of the Turing Machine tape. The state
of the Turing Machine will be represented in the program counter PC of the RAM, while the head
location will be stored in the register R0.

Now we have to say what the RAM should do when the Turing Machine performs a transition. To
do this, we need to write a set of instructions for the RAM which will simulate the corresponding
transition in the Turing Machine.

Specifically, suppose we have arranged our simulation so that when the Turing Machine is in state
qi, the value of the PC is pi. Then the instructions pi, pi + 1, pi + 2, up to pi+1 − 1 will be used to
simulate transitions out of the state qi. For the initial state q0, we start at line p0 = 0.

First, we want to look at the current tape symbol. Since the head position is stored in R0, we
can do this by executing the command read R0. However, we have to be careful because this will
overwrite the contents of R0. To be safe we copy these into R1 first:

line instruction meaning
pi: store R1 Save head position into R1

pi + 1: read R1 Put the current tape symbol into R0

Now we look at the transition of the Turing Machine. Suppose we have a transition that says

δ(pi, 1) = (pj , 2, R)

4

meaning, if we see 1 on the tape in the current state pi, we replace it with a 2, move the tape head
to the right, and move to state pj . We can implement that transition by the following program
fragment:

pi + 2: add -1 If the tape symbol was a 1, R0 becomes 0
pi + 3: jzero pi + 10 If this is the case, go to line pi + 10

At line pi + 10, we write the code for this transition: Replace the 1 on the tape with a 2 and move
the head right.

pi + 10: load 2 New value to be stored on tape
pi + 11: write R1 Write the new tape symbol
pi + 12: load R1 Move back the tape head into R0

pi + 13: add 1 Move the tape head to the right
pi + 14: jump pj Go to state pj

To handle the next transition, which maybe says δ(pi, 2) = (pl, 2, L), we write the next program
snippet starting at line pi+4:

pi + 4: add -1 If the tape symbol was a 2, R0 now becomes 0
pi + 3: jzero pi + 10 If this is the case, go to line pi + 15

. . .
pi + 15: load 2 New value to be stored on tape
pi + 16: . . .

and so on. After we have finished all of these we have a complete program for the transitions of
the Turing Machine. If state qi is the accept state, we only write the line

pi: accept Turing Machine has accepted

and similarly for the reject state.

3 Simulating a Random Access Machine on a Turing Machine

To simulate a RAM on a Turing Machine, we have to decide how we are going to represent the
state of the RAM (its registers and memory) on the Turing Machine tape. For convenience, we can
use a Turing Machine with multiple tapes. We represent each of the m registers on tapes 1 up to
m. Tape m + 1 will represent the memory of the RAM. Finally, we will have another tape m + 2
which we will use for scratch work in order to update the first m+ 1 tapes when necessary.

One way to represent the memory is as a list of the form (a1, v1)(a2, v2) . . . (at, vt), where (ai, vi)
means that the memory cell ai has value vi. Since the memory is infinite, but we can only represent
a finite number of cells, those whose value is zero will be omitted from the list. For example, if the
memory contents are

memory: 3 -1 0 -1 0 0 · · ·

then the memory will be represented by the string (0, 3)(1,−1)(3,−1) on the memory tape (tape
m+ 1) of the Turing Machine.

5

Now we have to explain how the simulation proceeds. Initially, the Turing Machine starts with the
input on its first tape. In order to simulate a RAM machine, we need to convert the input as if
it were written on the RAM – namely, rewrite it on the memory tape in proper form. Moreover,
we have to ensure the first m tapes, representing the registers, start with value zero. Here is a
high-level description of this initialization step of the Turing Machine:

Initialization: On input x1 . . . xn:

1. Insert a special marker $ at the beginning of each tape.

2. Write the string (0, x1)(1, x2) · · · (n− 1, xn) on the memory tape (tape m+ 1) of the Turing
Machine. Use the scratch tape to keep track of the memory addresses 0, 1, . . . , n − 1 as you
go along.

3. Erase the contents of the PC tape (tape 1) and write the value 0 on it. Write values 0 on all
the register tapes (tapes 1 up to m).

4. Erase the contents of the scratch tape (except for the special marker).

5. Move to the state representing instruction 0 of the RAM program.

Now that the input is converted to the proper form, we can simulate the instructions of the RAM
on the Turing Machine. For each instruction of the RAM, there will be a set of states of the Turing
Machine whose task it is to simulate that instruction. For each such set of states, there will be an
initial state which “represents” the corresponding instruction. We now give some examples of how
this simulation is done.

Suppose we need to simulate the instruction load n, which is part of the program of the RAM.
Recall that this instruction is supposed to put the value n in register R0. To do so, the look at the
R0 tape (tape 1) of the Turing Machine, erase its current value, and write the value n on it. We
then move to the state of the Turing Machine that describes the next instruction in the program.

Now suppose instead we need to simulate the instruction loadRk, which is supposed to copy the
value of Rk into R0. To do this on the Turing Machine, we erase the R0 tape, and copy the contents
of the Rk tape onto the R0 tape. We then move to the state of the Turing Machine that describes
the next instruction in the program. If instead we want to storeRk, we do the same operation with
the roles of the R0 and Rk tapes reversed.

Now let us consider the instruction readRk. This instruction is supposed to copy the value at
memory location Rk into R0. To simulate it, first we erase the R0 tape. We then walk along the
memory tape and compare each address component ai with the contents of the Rk tape. If we find
a match, we then copy the corresponding part vi of the (ai, vi pair onto the R0 tape. If we do not
find Rk among the addresses ai, we write 0 on the R0 tape. We then move to the state of the
Turing Machine that describes the next instruction in the program.

For the operation writeRk, we first attempt to find the address value described by tape Rk on the
memory tape. If we found such a value and the R0 tape has value 0, we erase the pair (ai, vi) from
the memory tape (and shift the subsequent contents to the left so it is properly formatted). If we

6

found a value ai that matches Rk and the R0 tape has a nonzero value, then we replace the value
vi with the value on the R0 tape. If we did not find an address value for Ri, then we make a new
pair (ai, vi) on the memory tape, where we copy ai from the Rk tape and we copy vi from the R0

tape. Finally, we move onto the state representing the next instruction.

For the instruction add n, addRk, and multRk, we need to perform some arithmetic. To do so,
we copy the values of R0 and Rk (or n) on the scratch tape. We then perform the addition or
multiplication on the scratch tape. We then copy the contents back to the R0 tape, and move to
the state representing the next instruction.

For the instruction jump n, we simply move to the state of the Turing Machine that represents
instruction n. For jzero n (resp., jpos n), we first look at the R0 tape, check the condition, and
then jump to the state representing the correct next instruction.

Finally, the instructions accept and reject are represented by the accept and reject states of the
Turing Machine, respectively.

