These are the examples for Tutorial 2 with solutions. The alphabet is $\Sigma=\{0,1\}$ in all the examples.

Problem 1

$L_{1}=\left\{0^{n^{2}} \mid n\right.$ is an integer and $\left.n \geq 0\right\}$

Solution

Suppose it is regular, then there exist a DFA that accept L_{1} and there are N states in the minimal DFA, say S. Let us choose the string $z=0^{N^{2}}$. By pumping lemma, $z=u v w$, where $|u v| \leq N$ and $|v| \geq 1, u v^{i} w$ can be accepted by S for every integer $i \geq 0$. Especially, when $i=2, u v^{2} w$ can be accepted by S. Let us check whether $u v^{2} w$ is in L_{1}.

$$
N^{2}=|u v w|<\left|u v^{2} w\right|=|u v w|+|v| \leq|u v w|+|u v| \leq N^{2}+N<N^{2}+2 N+1=(N+1)^{2}
$$

The length of $u v^{2} w$ is not square of any integers, then $u v^{2} w$ is not in L_{1}, contradiction.

Problem 2

$L_{2}=\left\{0^{m} 1^{n} \mid m>n \geq 0\right\}$

Solution

Suppose L_{2} is regular, then there exist a DFA, say S, with N states that can accept L_{2}. Choose $z=0^{N} 1^{N-1}$ and $z=u v w$, where $|u v| \leq N$ and v is the pumping, thus $|v| \geq 1$. With only pumping deleted, $u w$ also can be accepted by S. Notice that all symbols in v are 0 s, then $u w \notin L_{2}$, contradiction.

Problem 3

$L_{3}=\left\{0^{2 n} \mid n \geq 1\right\}$

Solution

It is easy to construct a DFA for L_{3}, so it is regular.

Problem 4

$L_{4}=\left\{0^{m} 1^{n} 0^{m+n} \mid m \geq 1\right.$ and $\left.n \geq 1\right\}$

Solution

Suppose L_{4} is regular, then there is a DFA, say S, with N states that can accept L_{4}. Choose $z=0^{N} 1^{N} 0^{2 N}$ and $z=u v w$, where $|u v| \leq N$ and v is the pumping, thus $|v| \geq 1$. With only pumping deleted, $u w$ also can be accepted by S. Notice that all symbols in v are 0 s , then $u w \notin L_{4}$, contradiction.

Problem 5

$L_{5}=\left\{0^{n} \mid n\right.$ is a prime $\}$

Solution

Suppose it is regular, then there is a DFA, say S, with N states that can accept L_{5}. Choose $z=0^{p}$, where p is a prime and $p \geq N$. We have the patition $z=u v w$, where $|u v| \leq N$ and v is the pumping, thus $|v| \geq 1$. Consider the string $z^{\prime}=u v^{|z|+1} w$, it can be accepted by L_{5}, but $\left|z^{\prime}\right|=|z|+|z||v|=|z|(1+|v|)$ is not a prime, contradiction.

Problem 6

$L_{6}=\{x \mid x$ does not have three consecutive 0s $\}$.

Solution

L_{6} is regular. You can construct a DFA for it.

Problem 7

$L_{7}=\{x \mid x$ has an equal number of 0 s and 1 s$\}$.

Solution

Suppose L_{7} is regular, then there is a DFA, say S, with N states that can accept L_{7}. Choose $z=0^{N} 1^{N}$ and $z=u v w$, where $|u v| \leq N$ and v is the pumping, thus $|v| \geq 1$. With only pumping deleted, $u w$ also can be accepted by S. Notice that all symbols in v are 0 s, then there are less 0's than 1's in $u w, u w \notin L_{7}$, contradiction.

Problem 8

$L_{8}=\left\{x \mid x=x^{R}\right\}$. Recall that x^{R} is x written backwards; for example, $(011)^{R}=110$.

Solution

Suppose L_{8} is regular, then there is a DFA, say S, with N states that can accept L_{8}. Choose $z=0^{N} 110^{N}$ and $z=u v w$, where $|u v| \leq N$ and v is the pumping, thus $|v| \geq 1$. With only pumping deleted, $u w$ also can be accepted by S. Notice that all symbols in v are 0 s, then $u w \notin L_{8}$, contradiction.

Problem 9

$L_{9}=\{x \mid x$ has a different number of 0s and 1 s$\}$.

Solution

The easier way to prove L_{9} is not regular goes like this. Suppose it is regular, then L_{7} is L_{9} 's complement, hence L_{7} is regular, contradiction.

If you want to prove L_{9} is not regular using the pumping lemma, it is also possible, but a bit more difficult. Suppose it is regular, then there is a DFA, say S, with N states that can accept L_{9}. Choose $z=0^{N} 1^{N+N!}$ and $z=u v w$, where $|u v| \leq N$ and v is the pumping, thus $|v| \geq 1$. (Here $N!=1 \cdot 2 \cdots N$.) Then $z^{\prime}=u v^{i} w$ can be accepted by S for every nonnegtive integer i. Set $i=N!/|v|+1$, then $z^{\prime}=u v^{N!/|v|+1} w$. Notice that all symbols in v are 0 s, it is easy to check $z^{\prime} \notin L_{9}$, contradiction.

