Problem 1

Design a TM M to accept the language $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.

Solution

Initially, the type of M contains $0^{n} 1^{n}$ followed by an infinity of blanks. Repeatedly, M replaces the leftmost 0 by X, moves right to the leftmost 1 , replacing it by Y, moves left to find the rightmost X, then moves one cell right to the leftmost 0 and repeats the cycle. If, however, when searching for a $1, M$ finds a blank instead, then M halts without accepting. If, after changing a 1 to a Y, M finds no more 0 's, then M checks that no more 1's remain, acceppting if there are none.
Let $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, X, Y, B\}$, and $F=\left\{q_{4}\right\}$. Informally, each state represents a statement or a group of statements in a program. State q_{0} is entered initially and also immediately prior to each replacement of a leftmost 0 by an X. State q_{1} is used to search right, skipping over 0 's and Y 's untial it finds the leftmost 1 . If M finds a 1 it changes it to Y, entering state q_{2}. State q_{2} searches left for an X and enters state q_{0} upon finding it, moving right, to the leftmost 0 , as it changes sstate. As M searches right in state q_{1}, if a B or X is encountered before a 1 , then the input is rejected; either there are too many 0 's or the input is not in $0^{*} 1^{*}$.

State q_{0} has another role. If, after state q_{2} finds the rightmost X, there is a Y immediately to its right, then the 0 's are exhausted. From q_{0}, scanning Y, state q_{3} is entered to scan over Y 's and check that no 1 's remain. If the Y 's are followed by a B, state q_{4} is entered and acceptance occurs; otherwise the string is rejected. The function is shown below.

	0	1	X	Y	B
$\rightarrow q_{0}$	$\left(q_{1}, X, R\right)$	-	-	$\left(q_{3}, Y, R\right)$	-
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, Y, L\right)$	-	$\left(q_{1}, Y, R\right)$	-
q_{2}	$\left(q_{2}, 0, L\right)$	-	$\left(q_{0}, X, R\right)$	$\left(q_{2}, Y, L\right)$	-
q_{3}	-	-	-	$\left(q_{3}, Y, R\right)$	$\left(q_{4}, B, R\right)$
$* q_{4}$	-	-	-	-	-

Problem 2

Design Turing machines to recognize $\left\{w w^{R} \mid w\right.$ is in $\left.(0+1)^{*}\right\}$

Solution

	0	1	X	B
$\rightarrow q_{0}$	$\left(q_{1}, X, R\right)$	$\left(q_{2}, X, R\right)$	$\left(q_{6}, X, R\right)$	$\left(q_{6}, B, R\right)$
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{1}, 1, R\right)$	$\left(q_{4}, X, L\right)$	$\left(q_{4}, B, L\right)$
q_{2}	$\left(q_{2}, 0, R\right)$	$\left(q_{2}, 1, R\right)$	$\left(q_{5}, X, L\right)$	$\left(q_{5}, B, L\right)$
q_{3}	$\left(q_{3},, L\right)$	$\left(q_{3}, 1, L\right)$	$\left(q_{0}, X, R\right)$	-
q_{4}	$\left(q_{3}, X, L\right)$	-	-	-
q_{5}	-	$\left(q_{3}, X, L\right)$	-	-
$* q_{6}$	-	-	-	-

The state q_{0} goes right on the tape and find the first one that is not X, say a, replace it by X. Then goes right to find the first X or B, if its left symbol is a, replace it by X, otherwise, reject.

