These are the examples for Tutorial 3 with solutions. The alphabet is $\Sigma = \{0, 1\}$ in all the examples.

Problem

Which of these languages is regular?

- (a) $L_1 = \{0^m 1^n : m > n \ge 0\}$
- (b) $L_2 = \{0^{2n} \colon n \ge 1\}$
- (c) $L_3 = \{0^m 1^n 0^{m+n} \colon m \ge 1 \text{ and } n \ge 1\}$
- (d) $L_4 = \{x : x \text{ does not have three consecutive } 0s\}$
- (e) $L_5 = \{x \colon x \text{ has an equal number of 0s and 1s}\}$
- (f) $L_6 = \{x : x = x^R\}$. Recall that x^R is x written backwards; for example, $(011)^R = 110$
- (g) $L_7 = \{0^{n^2}: n \text{ is an integer and } n \ge 0\}$
- (h) $L_8 = \{0^n : n \text{ is a prime}\}\$
- (i) $L_9 = \{x \colon x \text{ has a different number of 0s and 1s}\}$

The solutions are on the next page.

Solution

- (a) We show L_1 is not regular using the pumping lemma. Suppose L_1 is regular. Let n be its pumping length. Take $z = 0^n 1^{n-1}$, which is in L_1 . Then u and v consist only of zeros. By the pumping lemma, we can write z = uvw where $|uv| \le n$ and $|v| \ge 1$ so that $uv^i w \in L_1$ for every i. In particular $uw = uv^0 w$ should by in L_1 . But uw has at most n-1 zeros and at least n-1 ones, so $uw \notin L_1$, a contradiction.
- (b) L_2 is described by the regular expression $(00)^*$, so it is regular.
- (c) We show L_3 is not regular using the pumping lemma. Suppose L_3 is regular. Let n be its pumping length. Take $z = 0^n 1^n 0^{2n}$, which is in L_3 . Then u and v consist only of zeros. By the pumping lemma, we can write z = uvw where $|uv| \le n$ and $|v| \ge 1$ so that $uv^i w \in L_3$ for every i. In particular $uw = uv^0 w$ should by in L_3 . But uw has fewer 0s in the first block than 1s in the second block, so it is not in L_3 , a contradiction.
- (d) The complement of L_4 is the language $\{x \colon x \text{ contains three consecutive 0s}\}$. This language is described by the regular expression $(0 + 1)^* 000(0 + 1)^*$, so it is regular. Therefore L_4 is also regular.
- (e) We show L_5 is not regular using the pumping lemma. Suppose L_5 is regular. Let n be its pumping length. Take $z = 0^n 1^n$, which is in L_5 . Then u and v consist only of zeros. By the pumping lemma, we can write z = uvw where $|uv| \le n$ and $|v| \ge 1$ so that $uv^i w \in L_5$ for every i. In particular $uw = uv^0 w$ should by in L_5 . But uw has fewer 0s in the first block than 1s in the second block, so it is not in L_5 , a contradiction.
- (f) We show L_6 is not regular using the pumping lemma. Suppose L_6 is regular. Let n be its pumping length. Take $z = 0^n 10^n$, which is in L_6 . Then u and v consist only of zeros. By the pumping lemma, we can write z = uvw where $|uv| \le n$ and $|v| \ge 1$ so that $uv^i w \in L_6$ for every i. In particular $uw = uv^0 w$ should by in L_6 . But uw has the form $0^m 10^n$, where m < n. So $(uw)^R = 0^n 10^m \neq uw$, and uw is not in L_6 , a contradiction.
- (g) We show L_7 is not regular using the pumping lemma. Suppose L_7 is regular. Let n be its pumping length. Take $z = 0^{n^2}$, which is in L_7 . By the pumping lemma, we can write z = uvw where $|uv| \le n$ and $|v| \ge 1$ so that $uv^i w \in L_7$ for every i. In particular $uv^2 w$ should by in L_7 . But $uv^2 w$ has length $n^2 + |v| \le n^2 + n$, which is a number strictly between n^2 and $(n + 1)^2$ (because $(n + 1)^2 = n^2 + 2n + 1$), so it is not the square of any number. Therefore $uv^2 w$ is not in L_7 , a contradiction.
- (h) We show L_8 is not regular using the pumping lemma. Suppose L_8 is regular. Let n be its pumping length. Take $z = 0^p$, where p is any prime bigger than n. (Since there are infinitely many prime numbers, we can always choose such a p.) By the pumping lemma, we can write z = uvw where $|uv| \leq n$ and $|v| \geq 1$ so that $uv^i w \in L_8$ for every i. Take i = p + 1. Then uw has length p |v| and v^i has length i|v|. So $uv^i w$ has length (p |v|) + i|v| = (p |v|) + (p 1)|v| = p(|v| + 1), which is a product of two numbers greater than one. The length of $uv^i w$ is not a prime number, so $uv^i w \notin L_8$, a contradiction.

(i) The easier way to prove L_9 is not regular goes like this. Suppose it is regular, then L_5 is L_9 's complement, hence L_5 is regular. This contradicts part (e).

If you want to prove L_9 is not regular using the pumping lemma, it is also possible, but a bit more difficult. Suppose it is regular and let n be its pumping length. Take $z = 0^n 1^{n+n!}$, which is in L_9 . (n! is the factorial of n, given by $n! = 1 \cdot 2 \cdot 3 \dots n$.) By the pumping lemma, we can write z = uvw where $|uv| \leq n$ and $|v| \geq 1$ so that $uv^i w \in L_9$ for every i. But if we set i = n!/|v| + 1 (which is an integer because $|v| \leq n$, and so it divides n!), we get that $uv^i w$ has n + (i-1)|v| zeros and n! ones. By our choice of i, $uv^i w = 0^{n!} 1^{n!} \notin L_9$, a contradiction.