These are the examples for Tutorial 3 with solutions. The alphabet is $\Sigma=\{0,1\}$ in all the examples.

## Problem

Which of these languages is regular?
(a) $L_{1}=\left\{0^{m} 1^{n}: m>n \geq 0\right\}$
(b) $L_{2}=\left\{0^{2 n}: n \geq 1\right\}$
(c) $L_{3}=\left\{0^{m} 1^{n} 0^{m+n}: m \geq 1\right.$ and $\left.n \geq 1\right\}$
(d) $L_{4}=\{x: x$ does not have three consecutive 0 s$\}$
(e) $L_{5}=\{x: x$ has an equal number of 0 s and 1 s$\}$
(f) $L_{6}=\left\{x: x=x^{R}\right\}$. Recall that $x^{R}$ is $x$ written backwards; for example, $(011)^{R}=110$
(g) $L_{7}=\left\{0^{n^{2}}: n\right.$ is an integer and $\left.n \geq 0\right\}$
(h) $L_{8}=\left\{0^{n}: n\right.$ is a prime $\}$
(i) $L_{9}=\{x: x$ has a different number of 0 s and 1 s$\}$

The solutions are on the next page.

## Solution

(a) We show $L_{1}$ is not regular using the pumping lemma. Suppose $L_{1}$ is regular. Let $n$ be its pumping length. Take $z=0^{n} 1^{n-1}$, which is in $L_{1}$. Then $u$ and $v$ consist only of zeros. By the pumping lemma, we can write $z=u v w$ where $|u v| \leq n$ and $|v| \geq 1$ so that $u v^{i} w \in L_{1}$ for every $i$. In particular $u w=u v^{0} w$ should by in $L_{1}$. But $u w$ has at most $n-1$ zeros and at least $n-1$ ones, so $u w \notin L_{1}$, a contradiction.
(b) $L_{2}$ is described by the regular expression $(00)^{*}$, so it is regular.
(c) We show $L_{3}$ is not regular using the pumping lemma. Suppose $L_{3}$ is regular. Let $n$ be its pumping length. Take $z=0^{n} 1^{n} 0^{2 n}$, which is in $L_{3}$. Then $u$ and $v$ consist only of zeros. By the pumping lemma, we can write $z=u v w$ where $|u v| \leq n$ and $|v| \geq 1$ so that $u v^{i} w \in L_{3}$ for every $i$. In particular $u w=u v^{0} w$ should by in $L_{3}$. But $u w$ has fewer 0 s in the first block than 1 s in the second block, so it is not in $L_{3}$, a contradiction.
(d) The complement of $L_{4}$ is the language $\{x: x$ contains three consecutive 0 s$\}$. This language is described by the regular expression $(0+1)^{*} 000(0+1)^{*}$, so it is regular. Therefore $L_{4}$ is also regular.
(e) We show $L_{5}$ is not regular using the pumping lemma. Suppose $L_{5}$ is regular. Let $n$ be its pumping length. Take $z=0^{n} 1^{n}$, which is in $L_{5}$. Then $u$ and $v$ consist only of zeros. By the pumping lemma, we can write $z=u v w$ where $|u v| \leq n$ and $|v| \geq 1$ so that $u v^{i} w \in L_{5}$ for every $i$. In particular $u w=u v^{0} w$ should by in $L_{5}$. But $u w$ has fewer 0 s in the first block than 1 s in the second block, so it is not in $L_{5}$, a contradiction.
(f) We show $L_{6}$ is not regular using the pumping lemma. Suppose $L_{6}$ is regular. Let $n$ be its pumping length. Take $z=0^{n} 10^{n}$, which is in $L_{6}$. Then $u$ and $v$ consist only of zeros. By the pumping lemma, we can write $z=u v w$ where $|u v| \leq n$ and $|v| \geq 1$ so that $u v^{i} w \in L_{6}$ for every $i$. In particular $u w=u v^{0} w$ should by in $L_{6}$. But $u w$ has the form $0^{m} 10^{n}$, where $m<n$. So $(u w)^{R}=0^{n} 10^{m} \neq u w$, and $u w$ is not in $L_{6}$, a contradiction.
(g) We show $L_{7}$ is not regular using the pumping lemma. Suppose $L_{7}$ is regular. Let $n$ be its pumping length. Take $z=0^{n^{2}}$, which is in $L_{7}$. By the pumping lemma, we can write $z=u v w$ where $|u v| \leq n$ and $|v| \geq 1$ so that $u v^{i} w \in L_{7}$ for every $i$. In particular $u v^{2} w$ should by in $L_{7}$. But $u v^{2} w$ has length $n^{2}+|v| \leq n^{2}+n$, which is a number strictly between $n^{2}$ and $(n+1)^{2}$ (because $(n+1)^{2}=n^{2}+2 n+1$ ), so it is not the square of any number. Therefore $u v^{2} w$ is not in $L_{7}$, a contradiction.
(h) We show $L_{8}$ is not regular using the pumping lemma. Suppose $L_{8}$ is regular. Let $n$ be its pumping length. Take $z=0^{p}$, where $p$ is any prime bigger than $n$. (Since there are infinitely many prime numbers, we can always choose such a $p$.) By the pumping lemma, we can write $z=u v w$ where $|u v| \leq n$ and $|v| \geq 1$ so that $u v^{i} w \in L_{8}$ for every $i$. Take $i=p+1$. Then $u w$ has length $p-|v|$ and $v^{i}$ has length $i|v|$. So $u v^{i} w$ has length $(p-|v|)+i|v|=$ $(p-|v|)+(p-1)|v|=p(|v|+1)$, which is a product of two numbers greater than one. The length of $u v^{i} w$ is not a prime number, so $u v^{i} w \notin L_{8}$, a contradiction.
(i) The easier way to prove $L_{9}$ is not regular goes like this. Suppose it is regular, then $L_{5}$ is $L_{9}$ 's complement, hence $L_{5}$ is regular. This contradicts part (e).
If you want to prove $L_{9}$ is not regular using the pumping lemma, it is also possible, but a bit more difficult. Suppose it is regular and let $n$ be its pumping length. Take $z=0^{n} 1^{n+n!}$, which is in $L_{9}$. ( $n!$ is the factorial of $n$, given by $n!=1 \cdot 2 \cdot 3 \ldots n$.) By the pumping lemma, we can write $z=u v w$ where $|u v| \leq n$ and $|v| \geq 1$ so that $u v^{i} w \in L_{9}$ for every $i$. But if we set $i=n!/|v|+1$ (which is an integer because $|v| \leq n$, and so it divides $n!$ ), we get that $u v^{i} w$ has $n+(i-1)|v|$ zeros and $n!$ ones. By our choice of $i, u v^{i} w=0^{n!} 1^{n!} \notin L_{9}$, a contradiction.

