1 Turing Machine

1.1 DFA and PDA and TM

(a) DFA

- DFA contains finite states.
- When staying in the current state, read a symbol from input string, then move to another state according to transition function $\sigma: Q \times \Sigma \rightarrow Q$.
- Accept input string when reach an accept state after read whole input string.
(b) PDA
- PDA contains finite states and a infinite stack (memory).
- When staying in the current state, read a symbol from input string and pop a symbol from the stack, then push a symbol to the stack and move to another state according to transition function $\sigma: Q \times \Sigma \times \Gamma \rightarrow 2^{Q \times \Gamma}$.
- Accept input string when we reach an accept state after read whole input string.
(c) TM
- TM contains finite states and a infinite tape(input string + memory).
- When staying in the current state, read a symbol from the tape, then write a symbol to the tape, move to another state and move the head to the left or the right according to transition function $\sigma: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$.
- Halt immediately when reach accept state or reject state.

1.2 Formal description of TM

A Turning machine is a 7 -tuple, $\left(Q, \Sigma, \Gamma, \sigma, q_{0}, q_{\text {accept }}, q_{r e j e c t}\right)$, where Q, Σ, Γ are all finite sets.
(a) Q is the set of states,
(b) Σ is the input alphabet not containing the blank symbol \sqcup,
(c) Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subset \Gamma$.
(d) $\sigma: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$. is the transition function.
(e) $q_{0} \in Q$ is the start state.
(f) $q_{\text {accept }} \in Q$ is the accept state, and
(g) $q_{\text {reject }} \in Q$ is the reject state, where $q_{\text {reject }} \neq q_{\text {accept }}$.

2 An Example

Describe a Turning machine(TM) M_{2} that decides $A=\left\{0^{2^{n}} \mid n \geq 0\right\}$, the language consisting of all string of $0 s$ whose length is a power of 2 .

- A high level description of $M_{2}=$ " On input string w :
(a) Sweep left to right across the tape, crossing off every other 0 .
(b) If in stage (a) the tape contained a single 0 , accept.
(c) If in stage (a) the tape contained more than a single and the number of $0 s$ was odd, reject.
(d) Return the head to the left-hand end of the tape. Go to stage (a)."
- State diagram for Turing machine M_{2}.

Here $\Gamma=\{0, x, \square\}$. We can cross off every other 0 in part $q 3, q 4$. If the tape contains just a single 0 we will accept the string in part $q 1, q 2, q_{-} a c c$. And if the tape contains more than a single 0 and the number of $0 s$ is odd we will reject the string in part $q 4, q_{-} r e j$.

