1 Turing Machine

1.1 DFA and PDA and TM

- (a) DFA
 - DFA contains finite states.
 - When staying in the current state, read a symbol from input string, then move to another state according to transition function $\sigma: Q \times \Sigma \to Q$.
 - Accept input string when reach an accept state after read whole input string.
- (b) PDA
 - PDA contains finite states and a infinite stack (memory).
 - When staying in the current state, read a symbol from input string and pop a symbol from the stack, then push a symbol to the stack and move to another state according to transition function $\sigma: Q \times \Sigma \times \Gamma \to 2^{Q \times \Gamma}$.
 - Accept input string when we reach an accept state after read whole input string.
- (c) TM
 - TM contains finite states and a infinite tape(input string + memory).
 - When staying in the current state, read a symbol from the tape, then write a symbol to the tape, move to another state and move the head to the left or the right according to transition function $\sigma: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$.
 - Halt immediately when reach accept state or reject state.

1.2 Formal description of TM

A Turning machine is a 7-tuple, $(Q, \Sigma, \Gamma, \sigma, q_0, q_{accept}, q_{reject})$, where Q, Σ, Γ are all finite sets.

- (a) Q is the set of states,
- (b) Σ is the input alphabet not containing the blank symbol \sqcup ,
- (c) Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subset \Gamma$.
- (d) $\sigma: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$. is the transition function.
- (e) $q_0 \in Q$ is the start state.

- (f) $q_{accept} \in Q$ is the accept state, and
- (g) $q_{reject} \in Q$ is the reject state, where $q_{reject} \neq q_{accept}$.

2 An Example

Describe a Turning machine(TM) M_2 that decides $A = \{0^{2^n} | n \ge 0\}$, the language consisting of all string of 0s whose length is a power of 2.

- A high level description of $M_2 =$ " On input string w:
 - (a) Sweep left to right across the tape, crossing off every other 0.
 - (b) If in stage (a) the tape contained a single 0, accept.
 - (c) If in stage (a) the tape contained more than a single and the number of 0s was odd, reject.
 - (d) Return the head to the left-hand end of the tape. Go to stage (a)."
- State diagram for Turing machine M_2 .

Here $\Gamma = \{0, x, \Box\}$. We can cross off every other 0 in part q3, q4. If the tape contains just a single 0 we will accept the string in part $q1, q2, q_acc$. And if the tape contains more than a single 0 and the number of 0s is odd we will reject the string in part $q4, q_rej$.