Problem 1

Show $E_{T M}=\{M: M$ is a TM and $L(M)=\emptyset\}$ is undecidable.

Solution

We have already known that $L=\{(w, M): w$ is accepted by M. $\}$ is undecidable. Suppose $E_{T M}$ is decidable, then there exists a TM, say A, that can decide $E_{T M}$. For any input (w, M), construct M^{\prime} as follows.
(i) Rejects if the input does not equal to w.
(ii) If the input equals to w, simulate M on w. Accepts if M rejects w and rejects if M accepts w.

Now, we show that A accepts M^{\prime} iff M accepts w. " \Rightarrow ": If A accepts M^{\prime}, then M^{\prime} rejects all strings including w and this implies M accepts w. " \Leftarrow ": If M accepts w, then M^{\prime} rejects w. Since M^{\prime} also rejects all the other strings, M^{\prime} is accepted by A.

Now, we construct a TM for L. On input (w, M), construct M^{\prime} and run A on it, accepts if and only if A accepts. This contradict to the fact that L is undecidable.

Problem 2

$E Q=\left\{\left(M_{1}, M_{2}\right): M_{1}\right.$ and M_{2} are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ is undecidable.

Solution

Suppose $E Q$ is decidable, then there exists a TM, say A, that can decide $E Q$. Now, we use A to construct a TM to decide L, which is a contradiction. M_{1} rejects all strings. For input (w, M), construct M_{2} as follows,
(i) Rejects if the input does not equal to w.
(ii) If the input equals to w, simulate M on w. Accepts if M rejects w and rejects if M accepts w.

Since the definition of M_{2} is the same as that of M^{\prime} in problem 1 , then $L\left(M_{2}\right)=\emptyset$ is equivalent to M accepts w, and M_{2} rejects all strings is trivially equivalent to $L\left(M_{2}\right)=L\left(M_{1}\right)$.
Now, we construct a TM for L. On input (w, M), construct $\left(M_{1}, M_{2}\right)$ and run A on it, accepts if and only if A accepts. This contradict to the fact that L is undecidable.

Problem 3

Show $T=\left\{M: M\right.$ is a TM that accepts w^{R} whenever it accepts $\left.w\right\}$ is undecidable.

Solution

We have already known that $L=\{(w, M)$: w is accepted by M. $\}$ is undecidable. Suppose T is decidable, then there exists a TM, say A, that can decide T. For any input (w, M), construct M^{\prime} as follows.

If $w=w^{R}$, simulate M on w. The alphabet set of M is Σ, without loss of generality, say $a, b \notin \Sigma$. Let $\Sigma \cup\{a, b\}$ be the alphabet set of $M^{\prime} . M^{\prime}$ rejects all the other strings other than $a b$, for input $a b$, simulate M on w,
(i) If M accepts w, M^{\prime} rejects.
(ii) If M rejects w, M^{\prime} accepts.

Now, we show that A accepts M^{\prime} iff M accepts w. " \Rightarrow ": If A accepts M^{\prime}, singce M^{\prime} rejects all the other strings including $b a$, then M^{\prime} rejects $a b$ and this implies M accepts w. " \Leftarrow ": If M accepts w, then M^{\prime} rejects $a b$. Since M^{\prime} rejects all the other strings, M^{\prime} is accepted by A.

Now, we have constructed a TM for L. On input (w, M), construct M^{\prime} and run A on it, accepts if and only if A accepts. This contradict to the fact that L is undecidable.

