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Recall this version of the PCP theorem from last lecture.

Theorem 1. There exists an alphabet Σ and a constant ε > 0 for which the following task is NP-
hard: Given a satisfiable 2CSP instance over Σ, find an assignment that satisfies a 1 − ε fraction
of constraints.

In a general 2CSP instance, a variable may be present in an arbitrary number of constraints. What
if we restrict our attention to instances where every variable appears in at most d constraints,
where d is small compared to the number of variables? When d = 1, every variable appears in one
constraint and finding a satisfying assignment is easy. When d = 2, the task is a bit harder but still
solvable in time linear in n. On the other hand, when d is as large as the number of constraints
the problem becomes NP-hard. This suggests that the problem may become gradually harder as d
gets larger.

It turns out that this intuition is incorrect:

Theorem 2. There exists an alphabet Σ and constants d and ε such that given a satisfiable 2CSP
instance over Σ where every variable appears in at most d constraints, it is NP-hard to satisfy a
1− ε fraction of the constraints.

We prove this statement by reduction from Theorem 1. Let Φ be the 2CSP instance in question.
We want to construct a new instance Φ′ which is as hard as Φ, but every variable appears in at
most d constraints. Some of the variables in Φ may appear in more constraints. If variable xi
appears in ni different constraints it is natural to replace it with ni new variables x′i1, . . . , x

′
ini

and
impose some additional constraints that force all of x′i1, . . . , x

′
ini

to take the same value.

The first thing we may try is to add the constraints x′i1 = x′i2, x
′
i2 = x′i3, . . . , x

′
i(ni−1) = x′ini

to Φ′.

Then if Φ has a satisfying assignment, the assignment obtained by setting x′i1 = · · · = x′ini
= xi will

be satisfying for Φ′. If Φ′ was easy to approximate, we would then be able to obtain an assignment
x′ that satisfies a 1 − ε′ fraction of its constraints. Can we use x′ to extract an assignment that
satisfies most constraints in Φ?

It is not hard to see that if ε′ = 0, the assignment xi = x′i1 = · · · = x′ini
is satisfying for Φ. However,

even if one of the equality constraints is violated, the values of x′ij could split into two equally sized
sets. Then it is not clear which value to assign to xi and it is possible to come up with examples
where no matter which value we assign, a large fraction of the constraints of Ψ will be violated.

So we need to make the equality constraints more robust: If there is no clear majority among the
values x′i1, . . . , x

′
ini

, then not one but many of the equality constraints should be violated. One way
to do so is to impose the equality constraint x′ij = x′ij′ for every pair j < j′; but then we have done
nothing about reducing the number of constraints a variable appears in.

In general the equality constraints we are looking for can be described by an undirected graph G on
the vertices {1, . . . , t}. An assignment to x′i1, . . . , x

′
ini

can be viewed as a partition of the vertices
into sets Aσ = {j : x′ij = σ}, where σ ranges over Σ. On the one hand, we want the degree of this
graph to be constant. On the other hand, we want that a partition {Aσ} splits many of the edges
of G, unless one of the sets Aσ contains most of the vertices.
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Both of these properties are achieved by expander graphs. To understand expander graphs and their
properties we first need to take a detour into random walks, adjacency matrices, and eigenvalues.

In what follows we will assume the graph G is connected, d-regular, and non-bipartite.

1 Adjacency matrix and eigenvalues

Suppose a particle sits at a vertex s of some graph G. At every step, s moves to a random one of
its neighbors. How long will it take s to reach a vertex in G that looks random?

To answer this question, it will be helpful to represent the random walk by a sequence of probability
distributions p0,p1, . . . on the vertices of G, with the following interpretation: At each step t, pt(u)
is the probability of the particle ending up at vertex u after t steps of the walk. Initially, we have
p0 assign probability 1 to vertex s, and probability 0 to all the other vertices. The distribution
pt+1 can be calculated from pt via the formula

pt+1(u) =
∑

v:(v, u) is an edge

1

d
· pt(v). (1)

We are now interested in the following question: When t gets large, how close does the distribution
pt get to the uniform distribution u on the set of vertices? To answer this question, we need some
way of measuring how “close” two distributions are. In our setting the most convenient measure is
the `2 norm. The `2 norm of a vector v is the quantity

‖v‖ =
(∑

i

v2
i

)1/2

and the `2 distance between two vectors v and v′ is the `2 norm of v − v′. We will think of
probability distributions as vectors in Rn (with one entry for each vertex in the graph), and we will
say that two distributions p and p′ are ε-close (in `2 distance) if ‖p− p′‖ ≤ ε.

The (normalized) adjacency matrix of G is an n× n matrix A defined as follows:

Au,v =
number of edges between u and v in G

d

This matrix is symmetric and the entries in each row add up to one. Using A, we can write
equation 1 in matrix form as pt+1 = ptA (it is customary to represent pt as row vectors) and so
we immediately obtain that pt = p0At.

The eigenvalues and eigenvectors of A play a significant role in determining the behavior of random
walks on G. Recall that an eigenvalue-eigenvector pair is a complex number λ and a vector v such
that vA = λv. It is a basic theorem in linear algebra that symmetric matrices have an orthonormal
basis of eigenvectors with real eigenvalues. Let’s denote these pairs by (λ1,v1), . . . , (λn,vn) where
λ1 ≥ λ2 ≥ ... ≥ λn. (Some of the λi may be negative.)

What is the meaning of this? Initially the position of our particle is determined by the distribution
p0. Since the vectors v1, . . . ,vn form an orthonormal basis we can decompose p0 in the form

p0 = α1v1 + · · ·+ αnvn
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where αi = 〈p0,vi〉 and α2
1 + · · ·+ α2

n = 1.

After one step of the random walk, the distribution becomes

p1 = p0A = α1v1A+ · · ·+ αnvnA = α1λ1v1 + · · ·+ αnλnvn

and after t steps
pt = p0At = α1λ

t
1v1 + · · ·+ αnλ

t
nvn. (2)

Let’s think of what happens when t becomes large. We will assume the values αi are nonzero
since the initial position of the particle can be arbitrary.1 Eventually the right hand side of the
expression will be dominated by the term in which λi has largest absolute value; this is either |λ1|
or |λn|. This absolute value cannot exceed 1, because pt would then become very large, but its
norm is bounded since it is a probability distribution. Similarly, the absolute value cannot be less
than 1 because then pt would become very small when t gets large.

Therefore, it must be the case that λ1 = 1, and

max{|λi| : 2 ≤ i ≤ n} = max(λ2,−λn) ≤ 1.

The quantity on the left side is denoted by λ = λ(G) and plays a very important role because of
the following. First, note that uA = λ1u, so the eigenvector v1 associated to λ1 = 1 equals

√
n ·u.

Now from (2) we have that

‖pt − α1v1‖2 = α2
2λ

2t
2 + · · ·+ α2

nλ
2t
n ≤ λ2t.

The left hand side has a natural interpretation. Recall that α1 = 〈p0,v1〉 = 1/
√
n, so α1v1 equals

the uniform distribution u. Thus λt measures how close pt gets to the uniform distribution after t
steps of the walk: ‖pt−u‖ ≤ λt. Another way of saying this is that λ determines the rate at which
pt converges to the uniform distribution: The smaller λ is, the faster we will get to a uniformly
random vertex.

2 Expander graphs

How can we design a d-regular graph G such that starting from any vertex s, we can reach a random
vertex as soon as possible? If d = n we can take G to be the complete graph (with a loop around
every vertex), but we want d to be small compared to n. It seems a good idea to make as many
vertices of G reachable using short walks out of s. This suggests that G should look like a tree
rooted at s.

If we start as s, after about logd n steps we will find the particle near the leaves of the tree. However,
the particle is unlikely to stick at any particular leaf because there is only one path leading to it.
A random walk on the tree favors the interior vertices, so the vertex at which the particle ends up
won’t look random.

In some sense, this is a bit unfair because the leaves have degree one, and the graph is not d-regular.
We can ”connect up” the leaves in some way so as to make the graph be d-regular. Once we do

1This is not quite right: The correct way to say it is that for every index i there exists an initial position for the
particle that makes αi 6= 0.
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this, it seems plausible that after enough steps the vertex where the particle sits will indeed be
uniform (and this is in fact the case), but also that a random vertex is reachable from s rather
quickly (because in a tree, paths starting from s ”expand out” very quickly).

In the end there is nothing special about s, and what we want in some way is that if we choose any
vertex as the root, from the perspective of that vertex the graph looks a lot like a tree.

To be a bit more quantitative, if we start at s, even in the ideal case of a tree, we need just Ω(log n)
steps out of s to ”cover” all the possible vertices in G. So we cannot hope to end up at a random
vertex of G before we have completed at least Ω(log n) steps. Can we do so in O(log n) steps no
matter at which vertex s we started?

Recall that after t steps of the walk, our distance to the uniform distribution is upper bounded by
the value λt, where λ = max(λ2,−λn). This suggests that we want to design a graph whose value
λ is as small as possible.

This discussion indicates that λ can in fact never get too small. To get a lower bound on λ, notice
that after t steps of the walk, the potential number of vertices that could have been reached from
s never exceeds dt+1; there are at most this many vertices at distance ≤ t from s. So even when
t = logd n − 2, less than half of the vertices of the random walk are reachable. Therefore the
distribution pt must assign probability zero to the other half vertices, and

λt ≥ ‖pt − u‖ ≥
(
n/2 · (0− 1/n)2

)1/2
= 1/

√
2n.

It follows that λ = Ω(1/
√
d). A more precise analysis shows that for every graph, λ ≥ 2

√
d− 1/d−

on(1), where on(1) is quantity that converges to zero as n gets large. However, there exist graphs
such that λ = 2

√
d− 1/d for infinitely many values of n. Such graphs are called Ramanujan graphs.2

For our purposes, it will be enough to consider graph families for which as n grows, λ stays bounded
away from one. If this is the case, then after only t = Θ(log n) steps of the random walk, we have
that

‖pt − u‖ ≤ λΘ(logn) = n−Θ(1) (3)

so pt gets very close to the uniform distribution, and in fact all vertices of G are reached with
probability Θ(1/n).

Definition 3. A family of graphs {Gn}, where Gn has n vertices and is d-regular, is called an
expander family if there is a constant ε > 0 such that λ(Gn) ≤ 1− ε for every sufficiently large n.

3 Edge expansion

Suppose you start at a random vertex of some set S that is not too large and you take a random
edge out of this vertex. How likely are you to get out of S? This is the edge expansion of G:

h(G) = minS : |S|≤n/2 Pr(u,w)[w 6∈ S | u ∈ S]

The probability is taken over a random pair of vertices (u,w) that is connected by an edge in G.
Clearly it is necessary to put some bound on the size of S to make this quantity meaningful; why
we require that |S| ≤ n/2 is not terribly important for today’s lecture.

2Ramanujan graphs are known to exist for every n such that n+ 1 is a power of a prime larger than two.
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If a random walk out of any vertex s approaches the uniform distribution quickly, we would expect
such a walk to avoid “getting stuck” in any set S. The following claim makes this intuition precise:
If λ2 is bounded away from one, then h(G) cannot be too small:

Theorem 4. h(G) ≥ (1− λ2)/2.

To prove this theorem it is useful to describe the eigenvalues of A, the normalized adjacency matrix
of G, in an alternative way. To see how this can be done, we diagonalize the matrix A as STΛS,
where S is an orthonormal matrix whose rows are the eigenvectors v1, . . . ,vn, and Λ is a diagonal
matrix consisting of the entries λ1, λ2, . . . , λn in that order. (Recall that when S is orthonormal,
ST = S−1.) Then the eigenvectors of A and those of Λ are related by an orthonormal change of
basis.

Let’s now look at the eigenvalues of Λ, which are its diagonal entries. One way to describe the first
eigenvalue λ1 is to look at all possible vectors v of norm one, and take the one that maximizes the
expression vΛvT. Clearly this quantity is maximized by the vector v = e1 = (1, 0, . . . , 0), which
yields the value λ1. But now notice that

λ1 = max‖v‖=1 vΛvT = max‖v‖=1 v(SAST)vT = max‖v‖=1(vS)A(vS)T = max‖v‖=1 vAvT

because as v cycles over all vectors of norm one, so does vS. Now notice that

vAvT =
n∑

u,w=1

Auwv(u)v(w) =
∑

(u,w) is an edge

1

d
v(u)v(w) = nE(u,w)[v(u)v(w)]

where E(u,w)[·] denotes expectation taken over a random directed edge (u,w) in G. This gives the
following formula for λ1:

λ1 = n ·max‖v‖=1 E(u,w)[v(u)v(w)].

What about λ2? Again, we look at Λ, but now instead of maximizing over all vectors, we only
maximize over those that are orthogonal to the first vector e1:

λ2 = max‖v‖=1,v⊥e1 vΛvT = max‖v‖=1,v⊥e1(vS)A(vS)T.

Now notice that as v cycles over all vectors of norm 1 that are perpendicular to e1, vS will cycle
over all vectors of norm 1 that are perpendicular to e1S = v1, which is parallel to u. So we obtain
the following expression for λ2:

λ2 = max‖v‖=1,v⊥u vAvT = nmax‖v‖=1,v⊥u E(u,w)[v(u)v(w)].

Since our goal is to bound the value λ2 away from 1, it will be convenient to look at the expression
1− λ2. Using the above formula and simplifying a bit, we obtain

1− λ2 =
n

2
min‖v‖=1,v⊥u E(u,w)[(v(u)− v(w))2] (4)

=
1

2
minv⊥u

E(u,w)[(v(u)− v(w))2]

Eu[v(u)2]
. (5)

Proof of Theorem 4. Let S be any set of vertices of size at most n/2 and set

v(u) =

{
|S|/n, if u ∈ S
−|S|/n, if u 6∈ S.
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Notice that v ⊥ u, and that (v(u)−v(w))2 is 1 when exactly one of u and w is in S and the other
is in S, and 0 otherwise. In the first case we will say (u,w) crosses (S, S). Plugging into (5) we
obtain

1− λ2 ≤
1

2

Pr(u,w)[(u,w) crosses (S, S)]

Eu[v(u)2]
.

Now notice that

Pr(u,w)[(u,w) crosses (S, S)] = 2 Pr[w 6∈ S and u ∈ S] = 2 Pr[w 6∈ S | u ∈ S] · |S|
n

and

Eu[v(u)]2 =
1

n

[
|S| ·

(
|S|
n

)2
+ |S| ·

(
|S|
n

)2]
=
|S||S|
n2

≥ |S|
2n
.

4 Proof of Theorem 2

We now show how to deduce Theorem 2 from Theorem 1. Let Φ be a 2CSP with no restrictions on
the number of occurrences of each variable. We show how to get a new instance Φ′ out of Φ where
every variable occurs at most d times.

Each variable xi in Φ gives rise to ni variables x′i1, . . . , x
′
ini

in Φ′. For each constraint φii′(xi, xi′) in
Φ we assign unique copies x′ij , x

′
i′j′ in Φ′ and add d/2 copies of the constraint φii′(x

′
ij , x

′
i′j′) in Φ′.

Finally, for every i we fix a d/2-regular graph Gi on ni vertices with edge expansion h(Gi) ≥ 1/4
and introduce equality constraints x′ij = x′ij′ for every edge (i, i′) of Gi. We will call these the
equality constraints for i. We will discuss how to construct such an expander in the next lecture.

If Φ has m/2 constraints, then Φ′ will have m variables and dm constraints. If Φ is satisfiable, then
Φ′ is clearly satisfiable. Now suppose we could find an assignment x′ that satisfies a 1− ε fraction
of the constraints of Φ′. Then the following claim allows us to convert x′ into an assignment that
satisfies a 1− 18ε fraction of the constraints of Φ:

Claim 5. If some assignment x′ the violates at most an ε-fraction of contraints in Φ′, then the
assignment x where

xi = plurality (most frequent) value among x′i1, . . . , x
′
ini

violates at most a 34ε fraction of constraints in Φ.

By the definition of edge expansion, within every graph Gi

|E(S, S)| ≥ d|S|
8

for every subset S of vertices in Gi of size at most ni/2, where E(S, S) is the number of edges from
a vertex in S to a vertex outside S.

Let Si be the set of variables x′ij that agree with the plurality value xi. We will argue that because
of expansion Si must contain most of the variables x′ij unless many of the equality constraints for i
are violated. To make this quantitative, let εi be the fraction of the dni/4 equality constraints for
i violated by the assignment x′. We split the analysis into three cases:
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• If |Si| > ni/2, then |Si| < ni/2 and |E(Si, Si)| ≥ d|Si|/8. Since all the equality constraints
for i between Si and Si are violated by x′, |E(Si, Si)| ≤ εi(dni/4), so |Si| ≤ 2εini.

• If ni/4 ≤ |Si| ≤ ni/2, then |E(Si, Si)| ≥ d|Si|/8 ≥ dni/32. Since all the equality constraints
for i between Si and Si are violated by x′, it follows that εi ≥ 1/8, so |Si| ≤ ni ≤ 8εini.

• If |Si| < ni/4, then no value in Σ is taken by more than a 1/4-fraction of the x′ijs, so there
must exist some subset of values Σ′ ⊆ Σ so the number of x′ij taking values in Σ′ is between

ni/4 and ni/2. Just like in the previous case, we get |Si| ≤ ni ≤ 8εini.

We see that no matter what, |Si| ≤ 8εini for every i.

Now consider what happens in Φ′ when we replace the assignment x′ with the plurality assignment
x′plur ij = xi for every j. Replacing x′ by x′plur may cause the violation of at most (d/2)|Si| non-
equality constraints for every i. If x′ violates εdm constraints, x′plur will then violate at most

εdm+
n∑
i=1

(d/2)|Si| ≤ εdm+
n∑
i=1

(d/2)(8εini) = εdm+ 16

n∑
i=1

εidni/4 ≤ 17εdm

constraints of Φ′. This is a 17ε-fraction of all the constraints in Φ′. Since exactly half the constraints
in Φ′ are equality constraints, x cannot violate more than a 34ε fraction of constraints in Φ.
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