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In the last lecture we saw an application of expander graphs. There are many others in computer
science, and you can read about some of them in the book by Hoory, Linial, and Wigderson.
However we left out an important question unanswered: Do infinite families of expander graphs
even exist?

Obtaining expanding graph families requires some work, and I know of three different approaches
for going about it. Each of them has some advantages and some drawbacks. Recall that we are
looking for a family of d-regular graphs {Gn} on n vertices such that λ(Gn) > 1− ε for some ε > 0
and all n.

Here is a quick summary of the three approaches for obtaining such families:

• Probabilistic: Using the probabilistic method, we can argue that a random d-regular graph
on n vertices satisfies λ(Gn) > 1−ε with good probability. One advantage of the probabilistic
approach is that it shows the existence of graphs with very strong vertex expansion properties:
For every set S of vertices that is not too large, the number of neighbors of S is very close to
the maximum possible value of d|S|. The main disadvantage of the probabilistic approach is
that it is not explicit as it requires the use of randomness, and bad choices of the randomness
yield non-expanding graphs.

• Combinatorial: This is an iterative construction of infinite expander families. Starting from
a single graph G0, one iteratively applies the operations of powering and zig-zag product (or
replacement product), thereby obtaining a sequence of graphs G0, G1, G2, . . . on an increasing
number of vertices but with bounded degree. Powering makes sure that λ(Gn) ≤ λ(Gn−1),
while the zig-zag product keeps the degree bounded. This approach has one important ap-
plication in complexity theory: It leads to a space-efficient algorithm for connectivity in
undirected graphs.

• Algebraic: This approach exploits the algebraic and geometric properties of Cayley graphs,
which are graphs defined from generators of finite groups (or infinite groups of which finite
quotients are taken). One highlight of this approach is the construction of infinite families
of Ramanujan graphs, i.e. graphs Gn such that λ(Gn) ≤ 2

√
d− 1/d. (Recall that λ(Gn) ≥

2
√
d− 1/d − on(1).) Some of the expander families obtained using this approach are very

easy to describe (and implement).

In this lecture and the next one I want to show some ideas of the algebraic approach for constructing
expander families. This is a deep theory of which we will barely scratch the surface, but we will
see some unexpected connections with a seemingly unrelated object – small-biased sets.

1 Cayley graphs, Abelian groups, and small-biased sets

Recall that a group is a set with an operation which is associative ((ab)c = a(bc)) with an identity
(there is an element 1 such that a1 = 1a = a for every a) and inverses for all elements (for every a
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there is an a−1 such that aa−1 = a−1a = 1). A set S of group elements is called a generating set
if every element of G can be written as a finite product of elements in S. Here we will only worry
about finite groups.

Let S be a generating set for a group G which is closed under inverse (for every a in S, a−1 is also
in S. The Cayley graph Cay(G,S) is the |S|-regular graph where there is a vertex for every element
in G and an edge from g to sg for every g ∈ G and s ∈ S. (Parallel edges and loops are allowed.)
Since S is closed under inverse, this graph is undirected.

We are interested in constructing infinite families of Cayley graphs which are expanding. It is
common to start with a specific family of groups {Gn} and try to construct a set of generators Sn,
|Sn| ≤ d for Gn so that λ(Cay(Gn, Sn)) ≤ 1− ε.

To illustrate the connection between the algebra of the groups Gn and the expansion of the cor-
responding Cayley graphs let us start with some groups we already have some experience with,
namely Gn = Zn2 . Unfortunately it will not be possible to obtain expander families out of these
groups. Nevertheless, they will serve as a good introduction to Cayley graphs.

Let S = {s1, . . . , sd} be a subset of Zn2 . (In Zn2 every element is its own inverse, so S is automatically
closed under inverse.) Notice that S is a generating set for Zn2 if and only if the rank of s1, . . . , sd
viewed as vectors in Zn2 is n, which is only possible if d ≥ n. So it is not even possible to generate
Zn with a number of elements independent of n, much less make it into an expanding family. But
let us anyway try to answer the following question:

How small can λ = λ(Cay(Zn2 , S)) get among all sets S of size d?

We saw that λ(Cay(Zn2 , S)) = 1 unless d ≥ n, so let’s see what happens when d becomes larger.
Last time we showed that

λt ≥ ‖pt − u‖

for every t > 0, where pt is the distribution of a random walk after t steps starting from some
vertex s. Because of commutativity, after t = αd steps the random walk can reach at most(

d

0

)
+

(
d

1

)
+ · · ·+

(
d

t

)
≤ 2dH(α)

vertices. Let us choose t ≤ d/2 so that dH(α) = n− 1. Then at least 2n−1 of the vertices have not
been reached with t steps and

‖pt − u‖ ≥
√

2n−1 · (0− 2−n)2 = 2−(n+1)/2.

and so
λ ≥ 2−(n+1)/2t = 2−(n−1)/2αd−O(1/t) = 2−H(α)/2α−O(1/t).

Applying the upper bound H(α) ≤ α log2(1/α) +O(α), we obtain

λ ≥ 2− log2(1/α)/2−O(1)−O(1/t) = Ω(
√
α).

from where H(α) = O(λ2/ log(1/λ)), and so d = Ω(n/λ2 log(1/λ)). It turns out this is tight up to
the Ω(log(1/λ)) factors by the following lemma:

Lemma 1. λ(Cay(Zn2 , S)) = maxa6=0|Es∼S [χa(s)]|.
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This equation says that λ(Cay(Zn2 , S)) ≤ δ if and only if the uniform distribution over the set S is
δ-biased! In Lecture 2 we showed we can achieve |S| = O(n/δ2), and we just saw that it is necessary
to have |S| = Ω(n/δ2 log(1/δ)). It is not known if the logarithmic factor is necessary.

Proof. Let A be the normalized 2n × 2n adjacency matrix of Cay(Zn2 , S). Then we can write

A =
1

d

∑
s∈S

As

where As(g, h) = 1 if h = s+ g (using additive notation for the operation in Zn2 , and 0 otherwise).

A very nice property of abelian groups is that all the matrices As have the same eigenvectors, and
so these must also be the eigenvectors of A. The 2n eigenvectors of As are the character functions
χa viewed as vectors in Zn2 :

(χaAs)(h) =
∑
g

χa(g)As(g, h) = χa(s+ h) = χa(s)χa(h)

because the only g for which As(g, h) is nonzero is g = s + h. So χa is an eigenvector of As with
eigenvalue (−1)〈a,s〉, and by linearity χa is an eigenvector of A with eigenvalue

λa =
1

d

∑
s∈S

(−1)〈a,s〉.

This gives us a formula for all 2n eigenvalues of A. When a = 0, λ0 = 1, and so

λ(Cay(Zn2 , S)) = maxa6=0
1

d

∣∣∣∣∑
s∈S

χa(s)

∣∣∣∣ = maxa6=0|Es∼S [χa(s)]|.

Getting back to our objective of constructing an expanding family of Cayley graphs over Zn2 , we see
that this is impossible as λ(Cay(Zn2 , S)) = Ω(

√
d/n). The situation is similar over other Abelian

groups, and to make this approach work we have to turn to non-Abelian groups.

2 Group actions, Schreier graphs, and Kazhdan constants

The expander family we will give will not be a family of Cayley graphs, but a generalization called
Schreier graphs. Let G be a group and A be a set. A group action of G on A is a map from G×A
To A such that (1) (gh)a = g(ha) and (2) 1a = a for every a ∈ A. From (1) and (2) it follows that
if a = gb, then b = g−1a. We say the group action is transitive if for every a, b ∈ A there exists a
g ∈ G such that ga = b.

One kind of example is obtained by taking A = G and the group action is just applying the group
operation. More interesting examples, including the ones we will work with, come from geometry:
Here A can be the points of a geometric space and G can be a group of transformations that acts
on this space.

Let G be a group acting transitively on A and S a set of generators for G closed under inverse.
The Schreier graph Sch(A,S) has vertex set A and edges (a, sa) for every a ∈ A and s ∈ S. In
particular, every Cayley graph is a Schreier graph (with the group acting on itself).
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Let S = {s1, . . . , sd}. To analyze the expansion of Sch(A,S), we write the adjacency matrix A
as 1

d

∑
s∈S As, where As(a, b) = 1 if a = sb and 0 otherwise. As in the Abelian case, we want

to use this formula to analyze the eigenvalues of A. Unfortunately, it is no longer true that the
matrices As share the same basis of eigenvectors so we cannot expect to have a nice formula for
the eigenvalues of A.

However we do not need to know the exact eigenvalues of A, but we merely need to argue that all
but the highest one are bounded away from 1. We can ensure that λn ≥ −1 + 1/d by including the
identity 1 into S (this creates a loop around every vertex), so it remains to upper bound λ2. Recall
that

λ2 = maxv⊥u,‖v‖=1〈vA,v〉.

On the other hand,

〈vA,v〉 =
1

d

∑
s∈S
〈vAs,v〉.

Since every As is a permutation matrix, we have

〈vAs,v〉2 ≤ ‖vAs‖ · ‖v‖ ≤ ‖v‖2 = 1

from where we get

λ2 = maxv⊥u,‖v‖=1〈vA,v〉 ≤
d− 1 + κ

d
(1)

where
κ = κ(Sch(A,S)) = maxv⊥u,‖v‖=1 mins∈S〈vAs,v〉

is called the Kazhdan constant of the Schreier graph Sch(A,S).

Suppose we are given an infinite family of Schreier graphs Sch(An, Sn), where |Sn| = d for all n.
By the inequality (1), to show that this family is expanding, it is sufficient to prove that κ ≤ 1− ε,
that is: For every v ⊥ u, ‖v‖ = 1 there exists some s ∈ S such that 〈vAs,v〉 ≤ 1− ε, where ε > 0
is some constant independent of n. In the contrapositive: If ‖v‖ = 1 and 〈vAs,v〉 > 1− ε for every
s ∈ S, then v 6⊥ u (where S = Sn, A = An).

3 The Margulis-Gabber-Galil expander family

We now instantiate the analysis from the previous section to a specific family of Schreier graphs.
Let n be a prime and consider a group Gn of affine transformations z → Az + b generated by

ex = (1, 0) ey = (0, 1) T =

[
1 2
0 1

]
B =

[
1 0
2 1

]
.

Then Gn is generated by the transformations z → z + ex, z → z + ey, z → Tz, z → Bz and their
four inverses z → z− ex, z → z− ey, z → T−1z, z → B−1z, plus the identity.1. Let Sn be the set of
these nine transformations.

Theorem 2. {Sch(Z2
n, Sn)} is an expanding graph family.

1This is a bit different in letter but similar in spirit to the Margulis-Gabber-Galil construction
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Fix n and let S = Sn. To prove this theorem, we assume that ‖v‖ = 1 and 〈vAs,v〉 > 1− ε for all
s ∈ S, where ε is a sufficiently small constant (to be set later) and show that v 6⊥ u. We write

〈vAs,v〉 =
∑
z∈Z2

n

v(z)v(sz).

The condition that this expression is at least 1− ε can be rewritten as∑
z∈Z2

n

(v(z)− v(sz))2 ≤ 2ε. (2)

We can make better sense of this expression via Fourier analysis. First we need to show how to
do Fourier analysis in Z2

n. This is not so different from Fourier analysis over the Boolean cube; we
only have to be a bit more careful because when n > 2 we have to deal with complex numbers. We
also use a different normalization.

Let ω = e2πi/n be a root of unity. The character functions

ωa(x) = ωa1,a2(x1, x2) =
1

n
ω〈a,x〉

form an orthonormal basis over the vector space of functions from Z2
n to C with respect to the inner

product ∑
x∈Zn

2

f(x)g(x)

where the crossbar denotes complex conjugation. This gives the Fourier expansion

f(x) =
∑
a∈Z2

n

f̂(a)ωa(x) where f̂(a) =
∑
a∈Z2

n

f(x)ωa(x).

By orthogonality we have Parseval’s identity∑
x

|f(x)|2 =
∑
a

|f̂(a)|2.

Applying Parseval’s identity to (2) we obtain
∑

a|v̂(a)|2 = 1 and∑
a∈Z2

n

|v̂(a)− v̂s(a)|2 ≤ 2ε for every s ∈ S (3)

where v̂s(a) =
∑

z∈Z2
n
v(sz)ωa(z).

To see what this means, let us calculate the Fourier transforms v̂s for various s in S. When
s = (z → z + ex) we have

v̂s(a) =
∑
z∈Z2

n

v(z + ex)ωa(z) =
∑
z∈Z2

n

v(z)ωa(z − ex) = ω−a1 v̂(a)

so we get ∑
a∈Z2

n

|1− ω−a1 |2|v̂(a)|2 ≤ 2ε.
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Using the fact that |1− e−iθ|2 = 2(1− cos θ) ≥ 2(θ/π)2 for θ ∈ [−π, π] we have∑
a∈Z2

n

8a21
n2
· |v̂(a)|2 ≤ 2ε.

Let us represent the elements of Zn by the integers between −(n− 1)/2 and (n− 1)/2. Then

8
√
ε

∑
a : |a1|> 4√εn

|v̂(a)|2 ≤
∑

a : |a1|> 4√εn

8a21
n2
· |v̂(a)|2 ≤ 2ε

from where
∑

a : |a1|> 4√εn|v̂(a)|2 ≤
√
ε/4. We can apply the same argument to s = (z → z + ey)

and obtain the same formula for a2. Putting the two together we have∑
a : |a1| or |a2|> 4√εn

|v̂(a)|2 = O(
√
ε). (4)

Let us now look at the Fourier transform of s = (z → Tz):

v̂s(a) =
∑
z∈Z2

n

v(Tz)ωa(z) =
∑
z∈Z2

n

v(z)ωa(T
−1z) =

∑
z∈Z2

n

v(z)ωB−1a(z) = v̂(B−1a).

By the same argument we also obtain the formulas

v̂z→T−1z(a) = v̂(Ba) and v̂z→B−1z(a) = v̂(Ta).

To use these formulas, we apply the Cauchy-Schwarz inequality to (3) to get

∑
a∈Z2

n

∣∣|v̂(a)|2 − |v̂s(a)|2
∣∣ ≤√∑(|v̂(a)|+ |v̂s(a)|)2 ·

√∑
(|v̂(a)| − |v̂s(a)|)2

≤
√∑

(2|v̂(a)|2 + 2|v̂s(a)|2) ·
√∑

|v̂(a)− v̂s(a)|2 ≤ 2 ·
√

2ε =
√

8ε for every s ∈ S.

from where ∑
a∈Z2

n

∣∣|v̂(a)|2 − |v̂(Ta)|2
∣∣ ≤ √8ε and

∑
a∈Z2

n

∣∣|v̂(a)|2 − |v̂(Ba)|2
∣∣ ≤ √8ε. (5)

We now want to use (4) and (5) to argue that for ε small enough v̂(0, 0) 6= 0, which is the same as
saying v 6⊥ u. Let p(a) = |v̂(a)|2. Then p is a probability distribution over {−(n− 1)/2, . . . , (n−
1)/2}2. We will write p(A) =

∑
a∈A p(a) for the probability of an event A. Then we can interpret

(4) as saying that p(R) = 1−O(
√
ε), where

R = {a : |a1|, |a2| ≤ 4
√
εn}

We can also interpret the inequalities (5) as upper bounds on statistical distances between two
distributions. For example the first one says that the statistical distance between the distributions
p and pT which assigns to a the probability p(Ta) is O(

√
ε). This means for every A,

|p(A)− p(TA)| = O(
√
ε) and |p(A)− p(BA)| = O(

√
ε). (6)

where TA is the set obtained by applying T to all points in A and BA is defined similarly.
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Now let E be the event “|a1| < |a2| ≤ 4
√
εn” and F be the event “|a2| < |a1| ≤ 4

√
εn.2

The following picture illustrates what happens when we apply T to E and B to F . The dashed
square indicates the region R. Inside this region, TE falls completely inside F and BF falls
completely inside E.

a1

a2

E
F

E
F

apply transformation

R
TE

BF

TE

BF

By the above facts we have that

p(E) ≤ p(TE) +O(
√
ε) ≤ p(TE ∩R) +O(

√
ε) ≤ p(F ) +O(

√
ε).

Now
p(F ) ≤ p(BF ) +O(

√
ε) ≤ p(BF ∩R) +O(

√
ε).

Since BF ∩R is contained in E, we get that p(E−BF ∩R) = O(
√
ε). Analogously p(F−TE∩R) =

O(
√
ε). It follows that p(S) = 1−O(

√
ε), where S is the set depicted below:

S

Now you can check that T 10S ∩R intersects S only at (0, 0). Therefore

p(S) ≤ p(TS ∩R) +O(
√
ε) ≤ · · · ≤ p(T 10S ∩R) +O(

√
ε) ≤ p(0, 0) +O(

√
ε)

and so p(0, 0) = 1−O(
√
ε) > 0 provided ε is chosen sufficiently small.

2I do not really understand the reasons why things work out the way they do, but presumably one can come up
with an argument along these lines, which I found in Terence Tao’s lecture notes on expanders, by playing around
with the geometry of the linear maps T and B.
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