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In this lecture we will see two expander graph based transformations of codes. These constructions
can be applied towards obtaining small-biased distributions of improved support size.

Recall that a small-biased distribution over {0, 1}k consists of the columns of a generator matrix
of a linear code with message length k where the relative hamming weight of every codeword is
between (1− ε)/2 and (1 + ε)/2.

From the Gilbert-Varshamov bound we know that there exist ε-biased distributions over {0, 1}k of
(support) size s = k/H((1− ε)/2) = O(k/ε2). In homework 1 you showed that such codes can be
found in time poly(s)2s; this takes a lot of time when k is large and ε is small. Is it possible to do
better?

If we are willing to tolerate larger size we can improve this construction by concatenation. Let
us recall how this is done. We concatenate an outer Reed-Solomon code (over F2m) with an inner
code meeting the Gilbert-Varshamov bound. To achieve relative distance 1− ε, the Reed-Solomon
code has rate ε. For the inner code to have relative distance (1 − ε)/2, its rate must be Θ(ε2).
The concatenated code has relative distance (1 − ε)2/2 and rate Θ(ε3), which corresponds to a
((2− ε)ε)-biased distribution of size O(k/ε3).

How long does it take to find such a code? To make this construction work we need to choose
m ≈ log k, and so the inner code has block length O(log n/ε2). To find such a code we need to
invest time kO(1/ε2). Can we do even better?

We can improve the efficiency of the construction even further by an additional round of concate-
nation, but this has the effect of reducing rate from O(ε3) to O(ε4), and so the resulting ε-biased
distribution would have size O(k/ε4) and the time to find it would become around (log k)O(1/ε2).
Using concatenation alone, it looks like every time we want to improve the efficiency of the con-
struction we have to invest a O(1/ε) factor in the size of the the small-biased distribution.

1 The ABNNR transformation

Fix a constant δ0 > 0 and suppose that we have already constructed a linear code C of block
length O(k) and relative distance δ0. When δ0 is fixed this can be done quite efficiently (say in
time k · poly log k) by the above concatenation-based approach or in other ways.

Alon, Bruck, Naor, Naor, and Roth (ABNNR) give a general transformation that, given any ε > 0,
takes a code of block length n and relative distance δ0 over alphabet {0, 1} and produces a code
of block length n and relative distance 1− ε over alphabet {0, 1}poly(1/ε). Moreover, if the original
code is linear, so is the derived one. Applying this transformation to the code C and concatenating
with an inner code meeting the Gilbert-Varshamov bound for relative distance (1− ε)/2, we obtain
a binary code of rate O(ε3) and relative distance (1− ε)2/2 ≥ (1− 2ε)/2. It is easy to check that
this code also has maximum distance (1+ε)2/2, so it gives a 2ε-biased distribution of size O(k/ε3).

What is the advantage of this construction over the one based on concatenating Reed-Solomon
codes? In the previous construction the alphabet size of the inner code depended on k, but now
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it only depends on ε. Finding an inner code with the desired properties now takes time 2poly(1/ε),
which is exponential in 1/ε but completely independent of n. The exponent can be made as small
as O(1/ε3).

To describe this construction we need an n-vertex, d-regular expander graph G. Let G be the
double cover of G: The graph G is a degree-d bipartite graph on 2n vertices. Each vertex v of G
has two copies v1, v2 in G and every edge (u, v) of G gives rise to edges (u1, v2), (v1, u2) in G.

We now describe the ABNNR transformation that takes a code C of block length n over alphabet
{0, 1} and produces a code C ′ of block length n over alphabet {0, 1}d. Every codeword c ∈ {0, 1}n
of C gives a codeword c′ ∈ {0, 1}n of C ′ as follows. We associate a bottom vertex of G to every
coordinate of c and a top vertex to every coordinate of c′. The value c′(u) of codeword c′ at position
u is obtained by concatenating the values c(v1)c(v2) . . . c(vd) where v1, . . . , vd are the neighbors of
u in G.

Here is an example with n = 8, d = 4, and c = 01001000:

0 1 0 0 1 0 0 0

0100 0100 0000 0100 1000 1100 0100 0000

Theorem 1. If C has minimum distance δ0 then C ′ has minimum distance at least 1− ε, provided
λ(G) <

√
δ0ε.

For simplicity we prove this theorem for linear codes (which is the case we need anyway). Let c be
a codeword of C and c′ the corresponding codeword in c′. Let S be the set of nonzero coordinates
of c and T be the set of zero coordinates of c′. We want to show that it is not possible to have both
|S| ≥ εn and |T | ≥ δ0n. This follows from a more general statement about expander graphs:

Lemma 2 (Expander mixing lemma). Let G be a regular graph. For every pair of subsets S and
T of vertices of G, |S| = αn, |T | = βn,∣∣Predge (u, v)[u ∈ S and v ∈ T ]− αβ

∣∣ ≤ λ(G) ·
√
αβ.

Since there can be no edges between S and T , the probability in the lemma equals zero, λ(G) ≥√
δ0ε.

In the last lecture we showed a construction of a 9-regular expander E on n vertices with λ(E) ≤ 1−ε
for every n that is a square. Let K be a constant that satisfies λ(E)K ≤ 1/9. Now let G = Et,
that is the graph whose edges correspond to paths of length t in E. Then G has degree 9t and
λ(G) = λ(E)t. If we choose t so that λ(E)t is just below

√
δ0ε, then Theorem 1 tells us that C ′

has minimum distance ε. The alphabet size of C ′ is 29
t

= 21/λ(E)Kt
= 2O(1/ε2K).

Proof of Lemma 2. Let

s(v) =

{
1/
√
n, if v ∈ S

0, if v 6∈ S
and t(v) =

{
1/
√
n, if v ∈ T

0, if v 6∈ T .
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We write s = α1v1 + · · ·+ αnvn and t = β1v1 + · · ·+ βnvn in the basis of eigenvectors v1, . . . ,vn
of the normalized adjacency matrix A of G. Then

〈sA, t〉 =
∑
i,j

αiαj〈viA,vj〉 = α1β1 + λ2α2β2 + · · ·+ λnαnβn

from where ∣∣〈sA, t〉 − α1β1
∣∣ ≤ λ(G) ·

∣∣∣∑n

i=2
αiβi

∣∣∣.
We calculate the terms in this expression. First, 〈sA, t〉 =

∑
u,v s(u)t(v)Au,v. There is a contribu-

tion to the sum of 1/dn for every directed edge (u, v) of G such that u ∈ S and v ∈ T , so 〈sA, t〉 is
exactly the probability that u ∈ S and v ∈ T for a random edge (u, v). Second,

α1 = 〈s,v1〉 = |S|/n = α and β1 = 〈t,v1〉 = |T |/n = β.

Finally, ∥∥∥∑n

i=2
αiβi

∥∥∥ ≤
√√√√ n∑

i=2

α2
i ·

√√√√ n∑
i=2

β2i .

Since the basis v1, . . . ,vn is orthonormal,
∑n

i=2 α
2
i = ‖s‖2−α2

1 = α−α2 and similarly
∑n

i=2 β
2
i = β.

This gives the slightly stronger inequality∣∣Predge (u, v)[u ∈ S and v ∈ T ]− αβ
∣∣ ≤ λ(G) ·

√
α(1− α) · β(1− β).

2 A different way to improve the bias via expanders

We now show an alternative construction of ε-biased distributions of size O(k/εK) for some fixed
constant K. Unlike in the ABNNR transformation K here will be larger than 3 (it seems the best
it can do is K = 4), but the distributions can be constructed in time polynomial in k and 1/ε. This
is an unpublished construction of Eyal Rozenman and Avi Wigderson (and maybe others).

As in the ABNNR approach, this construction starts with an ε0-biased distribution D0 over {0, 1}k
of size O(k) and some fixed bias ε0 < 1/2. (Any ε0 < 1 will suffice but let us make the stronger
assumption for simplicity.) Again we use expander graphs to improve the bias of the distribution
at the expense of making it larger, but the expanders will now be used in a different way. What
we need is the following statement which you will prove in homework 3:

Theorem 3. Let D ⊆ {0, 1}n be an ε-biased distribution and G be a regular graph whose vertices
are labeled by samples of D so that the number of vertices labeled x is proportional to the probability
of x under D. Let D′ be the following distribution: Uniformly choose a random edge (x1, x2) of G
and output x1 + x2. Then D′ is (ε2 + λ(G))-biased.

We apply this construction iteratively. Suppose Di is an εi-biased distribution of size si. We apply
the theorem on Di and a graph Gi of degree di and λi = λ(Gi). Then the resulting distribution
Di+1 has bias εi+1 = ε2i +λi and size si+1 = disi (the elements of Di+1 correspond to ordered edges
of Gi).

We now choose Gi so that λi = ε2i and di = 1/λKi . (As above Gi can be chosen as a fixed power of
the expander from last lecture.) This gives the recursive relation

εi+1 = 2ε2i and si+1 = si/ε
2K
i
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with ε0 < 1, si = O(n). Solving this recurrence gives εi = (2ε0)
2i/2 and

si =
O(n)

(ε0ε1 . . . εi−1)2K
=

O(22Kin)

(2ε0)2K(2i−1) ≤
O(n)

(2ε0)2K·(2
i+i)

= O(n/ε
2(1+i/2i)K
i ) = O(n/ε4Ki ).
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