
CSCI 5060: Techniques in the theory of computing Lecture 3
The Chinese University of Hong Kong 1 February 2012

In Lecture 2 we looked at binary error-correcting codes in the regime where the relative distance is
large. We saw the Plotkin bound, which says that at relative distances exceeding 1/2 only a constant
number of messages can be encoded even as the codeword length grows. At distance exactly 1/2 we
can do a little bit better: The Hadamard code is an [n, log n, n/2] code, which is close to optimal.
At smaller distances, the Gilbert-Varshamov bound (together with some estimates) showed the
existence of [n,O(ε2n), (1− ε)n/2] codes. Is this the best we can do?

The answer to this question is surprisingly difficult (and not completely known). Today we will
see a weaker bound, which at least shows that as the relative distance of an [n, k, (1− ε)n/2] code
approaches 1/2 – i.e., as ε tends to zero, the rate k/n must also approach zero. To obtain this
bound we will introduce a generalized form of decoding corrupted codewords called list decoding, a
concept with many applications in computer science some of which we will see later in the course.

We will also begin a discussion of algorithmic aspects of decoding and list-decoding.

1 List decoding

Recall that we obtained a pretty good upper bound on the the message length of codes at small
distance via the volume bound: In an [n, k, d] code, all balls of radius b(d − 1)/2c centered at
codewords must be disjoint, so 2kV (b(d − 1)/2c) ≤ 2n or k ≤ n − log Vn(bd − 1c/2), where Vn(r)
is the volume of a hamming ball of radius r in {0, 1}n. At large distances d = (1 − ε)/2, we
have Vn(bd − 1c/2) ≤ Vn(n/4) ≤ 2nH(1/4), so this argument cannot give a better bound than
k ≤ (1−H(1/4))n ≈ 0.18n.

One intuition why the volume bound doesn’t do so well at large distances is that when we pack
large hamming balls into {0, 1}n, it is unreasonable to expect that every point of {0, 1}n will be
covered, and the above calculation suggests that an overwhelming fraction of the space won’t be
covered at all. A natural thing to try is to use larger balls, but then we have to account for the
possibility that these balls will intersect and some of the points in {0, 1}n will be counted multiple
times. How can we manage these overcounts?

Let’s look at a code of distance (1 − ε)n/2 where ε is small. We center a hamming ball of radius
ρn around every codeword. When ρ ≤ (1 − ε)/4, every point in {0, 1}n is covered at most once,
so let’s make ρ a little bit larger, say ρ = 1/4. What is the largest number of such balls that can
cover a point v ∈ {0, 1}n? An equivalent way to ask this question is: How many codewords does
can a ball of radius (1− ε)n/4 centered at v contain?

Without loss of generality, we may assume v = 0n (we can shift each codeword by v to make
this happen; this doesn’t change the distance). Then every codeword inside the ball has hamming
weight at most n/4. If there are at most four codewords inside the ball, then all these codewords
could have disjoint support (i.e. all the ones occur in different positions) so the distance between
any pair could be as large as n/2. But as soon as there are five codewords inside the ball, it is not
difficult to see that there must be a pair of codewords whose supports intersect on at least n/60
positions, and so the distance between these codewords is at most n/4 + n/4− n/60 = 29n/60, so
ε cannot be too small.

1

So we conclude that for ε sufficiently small, any code of distance (1− ε)n/2 cannot have more than
four codewords in any ball of radius n/4. In other words, suppose you receive a corrupted codeword
with n/4 errors. Although unique decoding is impossible at this error rate, we can still come up
with a list of four candidate codewords one of which is guaranteed to be the correct one.

The argument we gave is reminiscent of our intuition that led to the Plotkin bound. Recall that
the actual Plotkin bound was derived by adopting a geometic viewpoint. This line of thinking will
be helpful here too. It leads to the following theorem.

Theorem 1 (Johnson bound). Let c1, . . . , c` ∈ {0, 1}n be such that each ci has hamming weight at
most (1−α)n/2 and such that the hamming distance between every pair (ci, cj) is at least (1−ε)n/2.
Then ` ≤ 1/(α2/4− ε).

For α =
√

8ε, we get that in a code of distance (1−ε)n/2, a ball of radius (1−
√

8ε)n/2 can contain
at most 1/ε codewords. Since the distance is an integer, 1/ε ≥ n/2. (It is possible to improve some
constants here using additional ideas.)

Proof. As in the proof of the Plotkin bound, we embed c1, . . . , c` in {−1, 1}n by replacing 0 with 1
and 1 with −1. Then the assumptions translate into the geometric conditions

〈ci,1〉 ≥ α for all i and 〈ci, cj〉 ≤ ε for all i 6= j

where 1 is the all ones vector. (In geometric terms, this says that the vectors ci must be almost
perpendicular to one another, but they must also be at a large angle from the vector −1.) Then
for every parameter t,

0 ≤
∥∥∥∑̀
i=1

ci − t1
∥∥∥ ≤ ∑̀

i=1

‖ci‖2 + t2‖1‖2 +
∑
i 6=j
〈ci, cj〉 −

∑̀
i=1

t〈ci,1〉

≤ `n+ t2n+ `2εn− t`αn
=
(
t2 − α` · t+ (`+ `2ε)

)
n

<
(
t−
√
`+ `2ε

)2
n

provided (α`/2)2 > `+`2ε, that is ` > 1/(α2/4−ε). But setting t =
√
`+ `2ε gives a contradiction,

so we must have ` ≤
√
α2/4− ε.

Now let’s go back to the covering argument. If we center a ball of radius ρn = (1− α)n/2 around
every codeword, each point in 2n is covered at most ` times, so 2kVn((1 − α)n/2) ≤ `2n. By the
Johnson bound, when α =

√
8ε, ` ≤ 1/ε ≤ n/2. So we must have

2k−nVn((1− α)n/2) ≤ n/2

Using Stirling’s apporximation of the factorial, we have that Vn(ρn) ≥
(
n
ρn

)
= 2nH(ρ)−o(n), and so

2k−(1−H((1−α)/2)−o(1))n ≤ n/2

using the estimate 1−H((1− α)/2) = O(α2) from last lecture, we get that

2k−Ω(εn) ≤ n/2

which forces k = O(εn). This gives the desired conclusion: As the relative distance of the code
tends to 1/2, the rate k/n tends to zero. A sharper version of this argument is known as the
Elias-Bassalygo bound.

2

2 Resilient secret sharing

In a typical secret sharing scenario, n parties want to share some secret so that no party knows
what the secret is, but when the parties get together they can recover the secret. This comes up
in some cryptographic applications, for example electronic voting.

In a real-world election, the physical ballot boxes are usually locked at the start of the day and the
key is given under trust to the electoral commission, which has representatives from every party.
At the end of the day, the representatives unlock the box and count the votes. This setup ensures
both integrity (the votes are counted properly) and anonymity (it cannot be determined who voted
for whom).

There are different proposals how similar guarantees can be achieved in the digital setting. Here
is one such idea. When a person wants to vote, they publish an encryption of their vote using a
public key (known to the whole community). At the end of the day, the commission applies some
(publicly known) function to these encrypted votes, which gives an encryption of the tally. To
determine the outcome, the commission decrypts the encrypted tally.

There are various security and implementation issues that this oversimplified description does not
address, but I want to ignore these and focus on one point: Who should have access to the decryption
key? If any central authority knows the whole decryption key, then it can decrypt individual votes
compromising anonymity. A natural solution is to share the decryption key among the parties.
Then no single party can decrypt votes, but at the end of the day all the parties can submit their
shares of the key in order to reveal the tally.

But as we know all too well from real life, in every election some of the parties are bound to lose,
and they have an incentive to spoil the election. Such a party may submit a bogus share of the
secret key and affect the integrity of the election. How can we prevent this from happening? We
want to provide some redundancy in the shares so that even if some of them are incorrect, the
secret can still be recovered. This leads us to the following definition.

Definition 2. An n-party, r-secret, t-resilient secret sharing scheme over message space Σ is a pair
of functions (S,R), where S : Σ→ Σn is randomized and R : Σn → Σ is deterministic such that

• Secrecy: For every r coordinates i1, . . . , ir ∈ [n], the distribution (S(m)i1 , . . . , S(m)ir) is
independent of the message m.

• Resilience: For every m and every y that differs from S(m) in at most t positions, R(y) = m
(with probability one over the randomness of S).

The resilience condition is very reminiscent of codes, which suggests that codes can be helpful in
constructing such schemes. When Σ is a finite field F, secret sharing can be obtained from linear
codes with some additional properties. Take an [n, k, d]F linear code C(x) = Mx and let s ∈ Fk
be a special vector whose properties will become apparent shortly. To share the secret m ∈ F, we
choose a random x ∈ Fk conditioned on 〈s, x〉 = m and output the codeword C(x).

As long as d > 2t, the resilience property is immediate: On input y, R determines the closest
codeword C(x) to y and outputs 〈s, x〉. Since C is uniquely decodable up to radius t, we have
R(y) = R(S(m)) = m.

The secrecy property requires that for every r × n submatrix M ′ of M , the distribution M ′x
conditioned on 〈s, x〉 = m should be independent of the message m. For this, it is sufficient (in

3

fact equivalent) that M ′x is statistically independent from 〈s, x〉, which holds if (and only if) s is
linearly independent from the row space of M ′. We summarize these observations in the following
lemma:

Lemma 3. Let C(x) = Mx be an [n, k, d]F linear code and let s ∈ Fk be a vector that is linearly
independent from every collection of r rows of M . Then the scheme (S,R) described above is an
n-party, r-secret, b(d− 1)/2c-resilient secret sharing scheme.

Here is an implementation of an n-party, (k− 1)-secret, b(n− k)/2c-resilient secret sharing scheme
based on the [n, k, n− k + 1]F Reed-Solomon code. Recall that each message x ∈ Fk is associated
with a degree k − 1 polynomial px and the corresponding codeword is obtained by evaluating px
over all points of some evaluation set S ⊆ F. We will assume that 0 6∈ S (actually any element will
do). Let M be the encoding matrix of this code and 〈s, x〉 = px(0). To show secrecy, we need to
argue that s is linearly independent from every set of k − 1 rows of M . If not, then there must be
a linear dependency of the form

s = b1M1 + · · ·+ bk−1Mk−1

where M1, . . . ,Mk−1 are some rows of M . Recalling that 〈s, x〉 = px(0) and 〈Mi, x〉 = px(ai) for
some nonzero ai ∈ F, we obtain that

px(0) = b1px(a1) + · · ·+ bk−1px(ak−1)

for every polynomial px of degree at most k − 1. However, the polynomial p(z) =
∏k−1
i=1 (z − ai) is

a polynomial of degree k − 1 that vanishes at all ai but not at zero, contradicting our assumption
of linear dependence.

There is one unsatisfying aspect of the secret sharing scheme we just described. In our description
of the recovery algorithm R we asked that R finds the closest codeword C(x) to y. How should R
go about finding this closest codeword? The brute-force approach for finding the closest codeword
takes time around

(
n
t

)
(|F| − 1)t, which is quite large even for small values of t. Can we do better?

3 Decoding Reed-Solomon codes

The algorithmic aspects of decoding are quite intricate; it is unreasonable to expect an efficient,
optimal decoder that works for all codes as we know examples of codes for which optimal decoding
is computationally hard. Even for a randomly chosen linear code, only small improvements in the
effiiciency of decoding over brute-force search are known. For this reason it is more common to
study decoding algorithms for specific codes like the Reed-Solomon code, and sometimes to build
additional features into the code that will make decoding more tractable.

Fortunately, for the Reed-Solomon code, the algorithmic aspects of (unique) decoding are quite
well understood. Here is an algorithm of Berlekamp and Welch which has some nice and useful
extensions used in the theory of computing.

Since the codewords of the [n, k, n − k + 1]F Reed-Solomon codes are degree k − 1 polynomials
evaluated at some set S ⊆ F, S = {a1, . . . , an} the problem of Reed-Solomon decoding can be
viewed as polynomial reconstruction. Let’s start with the case when there are no errors. To decode
the codeword (y1, . . . , yn), we must find a polynomial p of degree k − 1 such that p(a1) = y1 and

4

p(a2) = y2 ... and ... p(an) = yn. In fact, any k of the pairs (ai, yi) uniquely determine the
polynomial p, and its coefficients can be found by solving p(ai) = yi as a system of linear equations
in the coefficients of p.

Here is an equivalent way of describing the same thing. Notice the bivariate polynomial p(x) − y
vanishes on all the pairs (ai, yi). Suppose we found a nonzero polynomial q(x, y) of the form
q(x, y) = p′(x) − y, where p′ has degree k − 1 and q(ai, yi) = 0 for k pairs (ai, yi). Then p′ must
equal p: Saying that q(ai, yi) = 0 is the same as saying that p′(ai) = p(ai), and if this happens at
k points then p′ − p is a polynomial of degree k − 1 with k zeros, so p′ = p.

Now let us bring in the errors: Suppose that p(ai) = yi for all but at most t of the pairs (ai, yi).
Let E denote the indices of these erroneous pairs. Then the polynomial

(p(x)− y)
∏
i∈E

(x− ai) = p(x)
∏
i∈E

(x− ai)− y
∏
i∈E

(x− ai)

still vanishes on all the pairs (ai, yi). This polynomial has terms xi with i ≤ k + t − 1 and
terms yxi with i ≤ t. So let’s see what happens if we manage to find a nonzero polynomial
q(x, y) = n′(x) − ye′(x), where n′ and e′ have degree at most k + t − 1 and t, respectively. This
polynomial q has k + 2t + 1 coefficients. If k + 2t = n, we can certainly find such a q by solving
q(ai, yi) = 0, 1 ≤ i ≤ n as a system of linear constraints in the coefficients of q. (If n is larger we
can ignore some of the data.) By analogy with the errorless case, we would like to say that e′(x)
has to equal

∏
i∈E(x− ai) and n′(x) must equal p(x)

∏
i∈E(x− ai). This is not quite true but very

close:

Lemma 4. Let (a1, y1), . . . , (an, yn) be distinct pairs, p a degree k−1 polynomial, and suppose that
p(ai) = yi for all i except possibly those i ∈ E. If the polynomial q(x, y) = n′(x) − ye′(x) (where
n′ and e′ have degree at most k + t − 1 and t, respectively) vanishes on all the pairs (ai, yi), then
n′(x) = p(x)e′(x), provided k + 2t ≤ n.

Proof. Since q(ai, yi) = 0 for all i outside E, and yi = p(ai) for all i outside E, it follows that
n′(ai) = p(ai)e

′(ai) for all n− t values of i outside E. Since n− t ≥ k + t, the polynomials n′ and
pe′ agree at k + t points. They both have degree at most k + t− 1, so they must be identical.

This shows the correctness of the following algorithm for decoding Reed-Solomon codes up to b(n−
k)/2c errors. On input (a1, y1), . . . , (an, yn) all distinct, find a polynomial q(x, y) = n′(x)− ye′(x)
that vanishes on all (ai, yi), where n′ has degree at most k+ t− 1 and e′ has degree at most t, and
output the polynomial n′(x)/e′(x).

There is a feature of this analysis which will be useful in the next lecture: Even if we receive several
pieces of inconsistent information about the value of p at the same point (for example, p(3) = 5
and p(3) = 7) the decoding still works, provided there are not too many errors.

4 Sudan’s list-decoding algorithm

Notice how crucial was the choice of degree of the polynomials n′ and e′ in the Berlekamp-Welch
algorithm: The degrees had to be large enough so there is enough degrees of freedom in the
coefficients of q to satisfy all the constraints q(ai, yi) = 0, but small enough to make sure that n′

and e′ do not have too many roots (and so they must be the same).

5

Since the algorithm we described works all the way up to the unique decoding radius, this is the
best we can do. To go beyond it, we must somehow make the degrees of n′ and e′ even smaller while
still preserving the number of coefficients of q. One thing that comes to mind is to allow for larger
degrees of y, so we take q(x, y) = q0(x)+q1(x)y+ · · ·+qd−1(x)yd−1. In the unique decoding setting,
we were able to read off the codeword from q0 and q1; since we are now in the list-decoding regime,
maybe we can hope that the other polynomials qi correspond in some way to various codewords in
the list. This sounds somewhat crazy and is not quite right, but it essentially works!

As before, we are given a list of pairs (a1, y1), . . . , (an, yn) so that p(ai) = yi for some polynomial p
of degree at most k−1 for all but at most t of these pairs and we want to reconstruct the polynomial
p. The only difference is that t is larger than before so there could be several polynomials that
agree with n− t of the pairs. We find a nonzero polynomial q of degree dx − 1 in x and dy − 1 in y
that vanishes on all these points; this is possible as long as dxdy > n. Can we somehow “read off”
p by looking at q?

We know only one thing, namely that q(x, p(x)) takes value zero at the n− t points (ai, yi) where
p(ai) = yi. But now q(x, p(x)) is a univariate polynomial of degree at most (dy−1)+(k−1)(dx−1);
if this is is smaller than n− t, then q(x, p(x)) must be identically zero.

Claim 5. If q(x, p(x)) is identically zero, then y − p(x) divides q(x, y).

Proof. Let q(x, y) =
∑
qi(x)yi. Then

q(x, y) = q(x, y)− q(x, p(x)) =
∑

qi(x)(yi − p(x)i) = (y − p(x))
∑

qi(x)

i∑
j=0

yjp(x)i−j .

On the other hand, multivariate polynomials have a unique factorization which can be found effi-
ciently, so p can be read off from the factorization of q. Also, since each candidate codeword p gives
rise to the term y − p(x) in the factorization of q, there can be no more than dy − 1 such terms.

It remains to calculate the parameters. We are free to choose dx and dy as long as dxdy > n and
(dy − 1) + (k− 1)(dx − 1) < n− t. By optimizing roughly we find out that both constraints can be
satisfied as long as t < n− 2

√
(k − 1)n (by setting dx =

√
n/(k − 1) + 1 and dy =

√
(k − 1)n+ 1).

When k is small compared to n, the decoding radius almost doubles, although we have to allow a
list of size dy ≈

√
kn.

This algorithm was discovered by Madhu Sudan. Later Guruswami and Sudan managed to remove
the factor of 2 in front of the square root, which makes a difference at small distances.

6

	List decoding
	Resilient secret sharing
	Decoding Reed-Solomon codes
	Sudan's list-decoding algorithm

