
CSCI 5060: Techniques in the theory of computing Lecture 4
The Chinese University of Hong Kong 8 February 2012

A decision problem is a computational problem with yes/no answers, for example: Given a graph
on k vertices, is the graph 3-colorable? In complexity theory we often describe such a problem by a
function family {fn : {0, 1}n → {0, 1}}, one for every input length n, which associate to each input
a 0/1 answer, where 0 means no and 1 means yes. In the 3-coloring example, G could be described
by its adjacency matrix, which we can view as a string of length n =

(
k
2

)
, and f(G) takes value one

if G is 3-colorable, and zero if not.

We usually want to know how much time it takes for the best possible algorithm to solve such a
problem f . This depends not only on the algorithm but also on the choice of input. In worst-case
complexity we ask that the algorithm solves f within some time bound t on all inputs. Average-case
complexity takes the point of view that not all inputs are relevant, so it asks that we solve f in
time t on some fraction of all 2n possible inputs.

Some natural problems turn out to be easier on average than in the worst case. For instance, the
3-coloring problem is NP-hard in the worst case, but most graphs on k vertices are not 3-colorable;
so while we do not expect to have an efficient worst-case algorithm for 3-coloring, the algorithm
that ignores its input and outputs “no” all the time works correctly on most inputs.

Could it in fact be the case that all “reasonable” decision problems are easy to solve on average.
The answer is not known, but there are many natural examples of decision problems that we do
not know how to solve efficiently even on average, although we usually cannot explain why this is
so. Impagliazzo and Wigderson showed examples of decision problems that are almost as hard to
solve on the average as they are in the worst case.

1 The Impagliazzo-Widgerson theorem

To describe this result we need a bit of complexity theory; for our purposes we can keep the
discussion at a fairly informal level. There are two reasonable models of computation in complexity
theory: algorithms and circuits. An algorithm is a single program that you can run (at least in
principle) on arbitrarily large inputs. A circuit family is an infinite sequence of programs, one for
every input length. As the input length grows, not only is the program given more time to run but
its size can also become larger.

A reasonable measure of the complexity of a computation is the size of the program plus the time
it takes the program to terminate on the given input. One intuition for this is that in many
computations, we have two extreme approaches. At one end, we look for the solution by brute
force. This takes a lot of time but a very short program. At the other end, we hard-code all
possible answers (for all inputs we can expect to get) into the program. Then the computation
gives an answer immediately but the program is very long. This suggests to define the complexity
of a computation as the sum of program size and running time.

Since the program size of an algorithm is fixed for all input lengths, the asymptotic complexity of
algorithms is determined by the running time (up to additive constant).

A decision problem {fn} has worst-case complexity t(n) if there is a computation A of complexity

1

t(n) on inputs of length n such that A(x) = fn(x) for every input x of length n. We say {fn} is
has average-case complexity t(n) with error δ(n) if there is a computation A that runs in time on
inputs of length n

Prx∼{0,1}n [A(x) = fn(x)] ≥ 1− δ(n).

Thus an average-case computation is allowed to fail on a δ(n)-fraction of inputs of length n.

Theorem 1. For every ε > 0 there is an ε′ > 0 so that the following holds. Suppose there exists a
decision problem {fn} that admits worst-case algorithms of time 2O(n), but requires circuit families
of worst-case complexity 2εn. Then there exists a decision problem {gn} that admits worst-case
algorithms of time 2O(n), but requires circuit families of average-case complexity 2ε

′n even with
error 1/2− 2−ε

′n.

Let me try to explain this in words. Say you have a decision problem {fn} whose hardness is roughly
exponential in the worst case: It requires circuits of exponential complexity, but has algorithms of
(slightly larger) exponential complexity. For all we know, problems like boolean formula satisfia-
bility (SAT) are exactly like that. While this theorem doesn’t tell us much about the average-case
hardness of SAT, it says there is a related problem {gn} that has not only similar hardness in the
worst case, but is in also very hard in the average case: No circuit family of size 2ε

′n can give
the correct answer on more than 1/2 + 2−ε

′n fraction of inputs. Notice that we can always get
the correct answer on half the inputs: Either the circuit that always outputs 0 or the circuit that
always outputs 1 is bound to be correct at least half the time. The Impagliazzo-Wigderson theorem
says that we cannot do much better for {gn}.

2 Codes and average-case hardness

We show an elegant proof of the Impagliazzo-Wigderson theorem due to Sudan, Trevisan, and
Vadhan. Their proof is based on an interesting connection between average-case hardness and
error-correcting codes. Let’s pretend that we have somehow managed to construct {gn} from {fn}
and now we need to argue that if {fn} is worst-case hard for circuits, then {gn} is average-case
hard for circuits. It is easier to work with the contrapositive of this statement: We need to argue
that if there is a circuit family {Cn : {0, 1}n → {0, 1}} computing gn in time t(n) = 2ε

′n with error
1/2 + 1/t(n), then there is another circuit family that computes fn without any errors.

This suggests a connection between converting average-case algorithms into worst-case algorithms
and error correction in codes. To make this connection explicit, we look at the truth-table repre-
sentation of functions from {0, 1}n to {0, 1}. Every such function can be specified as a collection
of 2n values, one for every input, so we can view such a function as a string of length 2n. Then the
statement “Cn computes gn with error δ(n) = 1/2 + 1/t(n)” just says that (the truth table of) Cn

is at relative distance δ(n) from (the truth table of) gn. So if we think of gn as a codeword obtained
from the “message” fk(n), then the truth-table of the circuit Cn would be a corrupted codeword. If
we managed to “decode” this codeword, we would get back a new function Dk(n) that equals fk(n).
This Dk(n) is the desired circuit for fk(n). We only need to arrange things so that the complexity
of this circuit is not too large.

Let’s set up this construction in the coding-theoretic framework and see what kind of code may be
helpful here. We want a family of error-correcting codes {CN}, where CN maps “messages” fk(n) of

length K(n) = 2k(n) into codewords gn of length N(n) = 2n so that:

2

• The encoding CN is computable in time polynomial in N = 2n: To compute gn(x), we need
to compute a codeword that depends on possibly all 2k(n) values fk(n). If CN is computable

in polynomial time, then gn(x) can be computed in time 2k(n)+O(n) = 2O(n).

• What distance should the code CN have? Since the “corrupted codeword” Cn can differ from
gn in as many as δ(n)-fraction of inputs, it appears we need CN to have relative distance at
least 2δ(n). However, this is impossible when δ(n) = 1/2 + 1/t(n), which is close to 1/2. Let
us ignore this issue for now and try to make CN have as large distance as possible.

• How can we make Dk(n) have circuit complexity t(n) ≤ 2ε
′n? To obtain Dk(n) we must decode

the “corrupted codeword” Cn. But Cn has length N = 2n so merely inspecting the codeword
will take too much time. But we do not need to compute all of Dk(n) at once; we only need
to find the value Dk(n)(x) at the specific input x we are given. In coding-theoretic terms,
what we want is not to decode the whole message, but merely to find the value of a specific
codeword entry. This leads us to the notion of local decoding.

3 Local decoding

Let C be an [N,K,D] code. An `-local decoding algorithm for C for t errors is a randomized
algorithm that on input i ∈ [K] and given access to any corrupted codeword y ∈ {0, 1}N with at
most t corruptions, inspects at most ` positions of y and outputs the value of the closest codeword
to y at position i with probability 2/3. (The exact value of this probability won’t matter too much
for us as long as it is bounded away from 1/2.)

To illustrate the concept let’s give a local decoding algorithm for the Hadamard code. Recall that
the Hadamard code is an [N,K = logN,N/2] code where the encoding Hada of a ∈ {0, 1}K consists
of the values 〈a, x〉 for all x ∈ {0, 1}K . We can view Hada as the truth-table of the linear function
Hada(x) = 〈a, x〉.

Suppose we have a corrupted codeword within distance N/8 from the code. We view this corrupted
codeword as the truth-table of a function f : {0, 1}k → {0, 1}. Then the fact that f is within
distance N/8 of the code says that

Prx∼{0,1}k [f(x) 6= Hada(x)] ≤ N/8 for some a ∈ {0, 1}k.

To decode the i-th bit of a, we choose a random x ∼ {0, 1}k and inspect the values f(x) and
f(x + ei), where ei is the vector that is all zero except at position i. If there were no errors, we
would get f(x) = 〈a, x〉 and f(x + ei) = 〈a, x + ei〉; adding these two values yields ai = 〈a, ei〉. If
there are few errors in f , this is still usually going to work, unless we are unlucky in our choice of
x:

Prx∼{0,1}k [f(x) + f(x+ ei) 6= ai] ≤ Prx∼{0,1}k [f(x) 6= 〈a, x〉] + Prx∼{0,1}k [f(x+ ei) 6= 〈a, xi〉]
≤ 1/8 + 1/8 < 2/3.

So the Hadamard code is 2-locally decodable for N/8 errors by the following simple algorithm:
On input i and given access to a corrupted codeword f , choose a random x ∼ {0, 1}k and output
f(x) + f(x+ ei).

However the rate of the Hadamard code is too low for our purposes. Recall that we managed to
get codes of better rate by concatenating the Reed-Solomon code and the Hadamard code. The

3

Reed-Solomon code gave us good rate, while we used the Hadamard code to reduce the alphabet
size.

This suggests looking at local decoding algorithms for the Reed-Solomon code. However the Reed-
Solomon code does not have good local decoding properties: If we allow for t errors, there can be
no t-local decoding algorithm. The intuitive reason is that if the t errors are random, then any
t positions of the corrupted codeword will look random and so they won’t give any information
about the codeword.

4 Reed-Muller codes

In the Reed-Solomon code, the message is a univariate polynomial and the codeword consists of
evaluations of this polynomial at various points. In the Hadamard code, we can view the message
a ∈ FK

2 as a linear function `a(x) = 〈a, x〉. Then the codeword consists of the evaluations of this
linear function at all points of FK

2 . This offers a unifying perspective on the two codes: In the
Reed-Solomon code, we evaluate a polynomial of fairly large degree but in one variable, while in
the Hadamard code we evaluate a polynomial of as low degree as possible (a linear function) but
in many variable.

There is a natural spectrum of intermediate alternatives, known as Reed-Muller codes. In the (m, d)
Reed Muller code over finite field F, the messages are m-variate polynomials p(x1, . . . , xm) of total
degree d and their encoding consists of the evaluation of p over all points in Fm. The number of
coefficient in an m-variate, degree k polynomial is

(
m+d
d

)
. The distance of this code is given by the

following important lemma:

Lemma 2 (Schwarz-Zippel). Let p be a degree-d multivariate polynomial over F. Then

Prx∼Fm [p(x) = 0] ≤ d/|F|.

Here is a fake “proof” of this lemma. If p is univariate, then the statement follows from the fact
that p has at most d zeros. Otherwise look at the restriction of p on a ` in Fm. Such a line can be
parametrized as `(t) = a+ bt, so p(`(t)) is a degree d univariate polynomial in t. By the univariate
case, Prt∼F[p(`(t)) = 0] ≤ d/|F|. Averaging over all lines, we get that

Pr`,t[p(`(t)) = 0] ≤ d/|F|. (1)

but a random point t on a line `(t) is just a random point in Fm, so Pr[p(x) = 0] ≤ d/|F|.

The problem with this proof is that p could vanish completely along some lines, in which case (1)
is not true. I think it can be fixed with some additional ideas if instead of looking at lines, we
consider (m− 1)-dimensional affine subspaces of Fm.

In any case, this idea inspires the following strategy for decoding Reed-Muller codewords. Say we
are given a corrupted version f of some codeword p. Take a random line `(t) and inspect the values
of f along the line `(t). On average, we expect f(`(t)) to agree with p(`(t)) about the same fraction
of times that f agrees with p. But p(`(t)) is a univariate polynomial in t, so we may be able to
recover p(`(t)) from f(`(t)) using the Reed-Solomon decoding algorithm. If we can recover p along
sufficiently many such random lines, we may be able to piece this information together and recover
p itself.

4

A careful implementation of these ideas gives not only a decoding algorithm, but a local recon-
struction algorithm. The difference between decoding and reconstruction is somewhat technical:
While the objective of decoding is to recover the message from a corrupted codeword, the objective
of reconstruction is to recover the original codeword.

5 Local reconstruction of Reed-Muller codes

Let f be a corrupted codeword of the Reed-Muller code with above parameters and p its closest
polynomial. Suppose f and p are at relative distance δ (i.e. they disagree on δ|F|m points). Let
B ⊆ Fm denote the set of points where they disagree.

We are interested in the fraction of points on which f and p disagree along a random line `, namely
the size of the intersection between ` and B. Let Xt be an indicator random variable for the event
that the t-th point along ` is in B. Since the t-th point on a random line is a random point in
Fm, we have E[Xt] = δ. By linearity of expectation, the expected intersection size of ` and B is
δ|F| ≤ d.

We now want to say that most lines have this intersection size with B. We can apply Markov’s
inequality, but it is possible to do better. Notice that any pair of points on a random line is
independent, so the random variables Xt are pairwise independent. So we can apply Chebyshev’s
inequality:

Lemma 3. Let X1, . . . , Xq be pairwise independent {0, 1}-valued random variables with E[Xi] = δ.
Then

Pr[X1 + · · ·+Xq ≥ δq + λ
√
δq] ≤ 1/λ2

for every λ ≥ 1.

Specifically for λ =
√

4d, we get that at most a 1/4d fraction of random lines have intersection size
with B exceeding δ|F|+

√
4dδ|F| = 3d. The decoding algorithm for the Reed-Solomon code works

for up to (|F| − d)/2 errors. If we choose F to have size at least 8d, then (|F| − d)/2 > 3d, and we
can handle disagreements as large as δ = 7/16.

How we can reconstruct p(x) at an arbitrary point x of our choice? The trick is to choose a
random line ` passing through x and choose any d+ 1 points x1, . . . , xd+1 along this line. For each
of these points xi, choose a random line `i through xi. Since xi is a random point, `i will be a
random line so p can be reconstructed along `i with probability 1/4d. In particular, this gives the
value p(xi). By a union bound, the probability that any of the values for p(xi) obtained in this
reconstruction is incorrect is at most (d+ 1)/4d < 1/3, so with probability 2/3 we get hold of the
values p(x1), . . . , p(xd+1). But p(`(t)) is a degree k polynomial, so knowing its values at d+1 points
allows us to obtain p(x).

To summarize, let’s describe the algorithm one more time:

Algorithm RMLocal(f, x) where f is a function from Fm to F and x ∈ Fm:
1. Choose a random line ` through x so that x = `(0) and points x1, . . . , xd+1 along this line.
2. For every 1 ≤ i ≤ d+ 1:
3. Choose a random line `i through xi so that xi = `i(0).
4. Apply the Reed-Solomon decoding algorithm to find the closest

5

5. degree d polynomial pi(t) for f(`i(t)).
6. Interpolate the unique degree d polynomial p(`(t)) such that p(xi) = pi(0).
7. Output the value of p(`(0)).

Here is a summary of what we proved about this algorithm.

Theorem 4. For |F| ≥ 8d and d sufficiently large, algorithm RMLocal is a O(d|F|)-local decoding
algorithm for the (m, d) Reed-Muller code for up to 1/2− 1/2d fraction of errors.

In fact this algorithm is an even stronger decoding algorithm than what is required in the definition;
you can check that for every f within relative distance 7/16 of some codeword p,

Pr[RMLocal(f, x) = p(x) for all x ∈ Fm] ≥ 2/3.

6 Proof sketch of the Impagliazzo-Wigderson theorem

To prove the Impagliazzo-Wigderson theorem, we will construct C by concatenating a suitable
Reed-Muller code with the Hadamard code. Recall that the Reed-Muller code is supposed to give
us reasonably good rate, but also local decoding. However, it is not possible to get such a code
over binary alphabet, and for this reason we concatenate with the Hadamard code.

We saw that the (m, d) Reed-Muller code maps messages of length K =
(
d+m
m

)
≥ (d/m)m into

codewords of length N = |F|m and has a O(d|F|)-local decoder up to relative distance 7/16, for
|F| ≥ 8d. For d = (logK)2, m = O(logK/ log logK), and the block length is at most N ≤ K2.

The concatenation of the (m, d) Reed-Muller code and the Hadamard code maps messages of length
at least K = 2k into codewords of length at most N |F| = 2O(k). What about decoding? The local
decoder for the Reed-Muller code works up to relative distance 7/8, and we saw a local decoder
for the Hadamard code for relative distance 1/8. Composing these two, we get an O(poly logK) =
poly(n) local decoder for the concatenated code up to relative distance (1/8)(7/16) = 7/128.

This falls well short of what we wanted to do, which was to decode up to relative distance 1/2+2−ε
′n.

We observed that unique decoding is impossible at this distance, so we have to turn to list-decoding.
Fortunately, the local decoding algorithm RMLocal for the Reed-Solomon code can be converted
into a local list-decoding algorithm by replacing the Reed-Solomon decoding algorithm in step 3
with Sudan’s list-decoding algorithm. This local list-decoding algorithm works even at distances
close to 1. For the inner Hadamard code, it turns out that finding all the codewords in the list by
brute-force is sufficient for our purposes. With some modification in the choice of parameters and
a few additional ideas, we can prove Therorem 1 along these lines.

6

	The Impagliazzo-Widgerson theorem
	Codes and average-case hardness
	Local decoding
	Reed-Muller codes
	Local reconstruction of Reed-Muller codes
	Proof sketch of the Impagliazzo-Wigderson theorem

