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Recall that an (N,K) two-source hitter is a function f : [N ]2 → {0, 1} that is not constant on any
product of sets S×T of size K each. We showed (N, 2 logN + 1) two-source hitters exist, but even
after optimizations the best construction of such a hitter took us around 2n

2
time, where N = 2n.

Here is a simple proposal for a two-source hitter, due to Chor and Goldreich:

f(x, y) = 〈x, y〉 mod 2 = x1y1 + x2y2 + · · ·+ xnyn mod 2

where xi and yi are the ith bist of x and y, respectively.

How well does this work? Actually it can never work too well: S and T must have size at least√
N (at least when n is even; can you see why)? However, if S and T are larger than that, we have

Theorem 1. The function 〈x, y〉 mod 2 is a (N,
√
N + 1) two-source hitter.

Proving this theorem from scratch is not impossible, although I suspect it would be a bit challenging.
Using Fourier analysis, the answer comes out staring at us.

1 Fourier analysis

Fourier analysis allows us to (literally) look at Boolean functions from a different angle. Instead of
Boolean functions, we look at more general functions that take inputs from {0, 1}n, but produce a
real-valued output. A Boolean function is the special case when there are only two possible output
values among all reals, usually the values {0, 1} or {−1, 1}.

We can think of a function f from {0, 1}n to the real numbers as a vector in 2n dimensional space.
The standard basis for this space consists of those vectors that have entry 1 in exactly one of the
2n positions, and entry 0 everywhere else. These are the 2n functions δa (a ∈ {0, 1}n), which take
value 0 everywhere except at a, where they take value 1.

Now any function f over {0, 1}n can be written as a linear combination of the functions δa. The
coefficient in front of δa – the value f(a) – is then simply just the inner product between f and δa.

The Fourier transform allows us to express f in a different orthogonal basis. This is the basis
consisting of the character functions χa : {0, 1}n → R

χa(x) = (−1)〈x,a〉, a ∈ {0, 1}n.

It is easy to verify that, viewed as vectors, the functions χa are orthogonal and each has norm 2n/2.
Instead of normalizing these functions, it is more convenient to work with respect to the normalized
inner product

inner product of f and g = Ex∼{0,1}n [f(x)g(x)] =
1

2n

∑
x∈{0,1}n

f(x)g(x).

In this basis, a function f : {0, 1}n → R can be written as a linear combination of the χas:

f(x) =
∑

a∈{0,1}n
f̂a · χa(x)
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where the coefficient f̂a is just the inner product of f and χa:

f̂a = Ex∼{0,1}n [f(x)χa(x)]. (1)

Parseval’s identity Since the bases {δa} and {χa} are related by an orthonormal transformation
(up to the normalization factor 2n/2), the sum of the squares of the coefficients of f in these two
bases should be the same. This is Parseval’s identity:∑

a∈{0,1}n
f̂2a = Ex∼{0,1}n [f(x)2].

We can also prove this algebraically by a calculation:

Ex∼{0,1}n [f(x)2] = Ex∼{0,1}n
[(∑

a∈{0,1}n
f̂aχa(x)

)2]
= Ex∼{0,1}n

[∑
a,b∈{0,1}n

f̂af̂bχa(x)χb(x)
]

=
∑

a,b∈{0,1}n
f̂af̂b Ex∼{0,1}n [χa(x)χb(x)]

=
∑

a∈{0,1}n
f̂2a

as the only surviving terms in the summation over a and b are those where a = b.

If f takes values in the range [−1, 1], we obtain that the sum of the squares of the Fourier coefficients
is at most 1. If f takes only the values −1 and 1, then the sum of the squares is exactly 1, and so
the squares of the Fourier coefficients can be thought of as a probability distribution over {0, 1}n.

2 Analysis of the Chor-Goldreich construction

Let us see immediately how this can be used to analyze the Chor-Goldreich construction. The first
step in doing Fourier analysis is to come up with an algebraic representation of the problem we
are looking at. In the Chor-Goldreich construction, we want to say that there is some variation
among the values 〈x, y〉, where x and y range from S and T respectively. One way to say this is
that when x and y are chosen at random from their respective sets, the expected value E[〈x, y〉] is
not identically zero or identically one:

0 < Ex∼S,y∼T [〈x, y〉 mod 2] < 1.

Instead of working with a separate lower bound and upper bound, it is more convenient to just
have one. We can accomplish this by the usual “change of constants” from {0, 1} to {1,−1}. In
this notation we want to show that:

|bias| < 1 where bias = Ex∼S,y∼T [(−1)〈x,y〉].

Now comes a useful trick in Fourier analysis: We convert sets into functions. In our case, we will
replace S and T by their respective indicator functions:

f(x) =

{
1, if x ∈ S
0, otherwise

g(y) =

{
1, if y ∈ T
0, otherwise
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We can write:

bias =
1

|S| · |T |
∑

x,y∈{0,1}n
f(x)g(y)(−1)〈x,y〉

=
2n

|S| · |T |
∑

x∈{0,1}n
f(x) Ey∼{0,1}n [g(y)(−1)〈x,y〉]

=
2n

|S| · |T |
∑

x∈{0,1}n
f(x) · ĝx.

Another salient feature of these proofs is the Cauchy-Schwarz inequality.∑
x∈{0,1}n

f(x) · ĝx ≤
√ ∑

x∈{0,1}n
f(x)2 ·

√ ∑
x∈{0,1}n

ĝ2x.

By definition, the first term equals
√
|S|. By Parseval’s identity, the second term equals

√
|T |/2n

and
bias ≤

√
2n/|S||T |

so if |S|, |T | > 2n/2, as we assumed, then 〈x, y〉 is indeed a two-source hitter.

3 The linearity test

There are two different ways of saying that a function f : {0, 1}n → {0, 1} is linear:

1. f is linear if it has the form f(x) = a1x1 + · · ·+ anxn.

2. f is linear if f(x+ y) = f(x) + f(y) for all x, y ∈ {0, 1}n.

It is clear that the first characterization implies the second. What about the other way? You can
argue this direction with some algebra. But there is an elegant proof via Fourier analysis that has
nice extensions relevant in computer science.

So let’s assume that f(x + y) = f(x) + f(y) for all x, y ∈ {0, 1}n and see what we can deduce
about f itself. To apply Fourier analysis, we replace the 0, 1 outputs of f by 1,−1 via the usual
substitution F (x) = (−1)f(x). Then the assumption becomes F (x+ y) = F (x)F (y), or

F (x)F (y)F (x+ y) = 1 for all x, y ∈ {0, 1}n.

Averaging over all pairs x, y, we get

Ex,y∼{0,1}n [F (x)F (y)F (x+ y)] = 1. (2)

Fourier analysis is often helpful with expressions that look like the one on the left. Let’s see what
we get:

E[F (x)F (y)F (x+ y)] = Ex,y∼{0,1}n
( ∑
a∈{0,1}n

F̂aχa(x)
)( ∑

b∈{0,1}n
F̂bχb(y)

)( ∑
c∈{0,1}n

F̂cχc(x+ y)
)

= Ex,y∼{0,1}n
∑

a,b,c∈{0,1}n
F̂aF̂bF̂cχa(x)χb(y)χc(x+ y)

=
∑

a,b,c∈{0,1}n
F̂aF̂bF̂c · Ex,y∼{0,1}n [χa(x)χb(y)χc(x+ y)].
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Recalling that χa(x) = (−1)〈a,x〉, we can write

Ex,y∼{0,1}n [χa(x)χb(y)χc(x+y)] = Ex,y∼{0,1}n [χa+c(x)χb+c(y)] = Ex∼{0,1}n [χa+c(x)] Ey∼{0,1}n [χb+c(y)].

Now notice that this expression equals zero unless a = c and b = c, and so

E[F (x)F (y)F (x+ y)] =
∑

a,b,c∈{0,1}n :
a = c and b = c

F̂aF̂bF̂c =
∑

a∈{0,1}n
F̂ 3
a .

Therefore, from (2) we must have
∑
F̂ 3
a = 1. But by Parseval’s identity

∑
F̂ 2
a = 1; this is only

possible if F̂a = 1 for exactly one value of a, which means that F (x) = χa(x).

One important advantage of this Fourier-analytic proof is that it is robust: Even if the constraint
f(x) + f(y) = f(x+ y) fails to hold sometimes, we cannot say anymore that f is linear, but we can
still say that it is “close” to linear.

Theorem 2. Suppose that f(x) + f(y) = f(x+ y) with probability 1− δ when x and y are chosen
independently at random from {0, 1}n. Then Pr[f(x) = 〈a, x〉 mod 2] ≥ 1− δ for some a ∈ {0, 1}n.

Proof. Writing F (x) = (−1)f(x), we have

Ex,y∼{0,1}n [F (x)F (y)F (x+y)] = Pr[F (x)F (y)F (x+y) = 1]−Pr[F (x)F (y)F (x+y) = −1] = 1−2δ

and so ∑
a∈{0,1}n

F̂ 3
a = 1− 2δ.

Since
∑
F̂ 3
a ≤ (max F̂a)

∑
F̂ 2
a = max F̂a, there must exist a ∈ Fn such that F̂a ≥ 1 − 2δ. But

F̂a = E[F (x)χa(x)] = Pr[F (x) = χa(x)]− Pr[F (x) 6= χa(x)], so Pr[F (x) = χa(x)] ≥ 1− δ.

This theorem can be interpreted as a statement about the following scenario. We are given an
unknown function f and we want to test if f is a linear function. A natural idea is to choose two
random inputs x and y and check if f(x) + f(y) = f(x + y). If f is linear, the test will certainly
pass. The theorem tells us that if f passes the test with high probability, then we can be sure that
f is close to a linear function.

4 Local list-decoding of the Hadamard code

Recall that the Hadamard encoding of a message a in {0, 1}n (here we change the usual convention
and we use n to denote message length instead of block length) consists of the evaluations 〈a, x〉 mod
2 over all x in {0, 1}n. If we think of Hadamard encodings as (truth tables of) boolean functions from
{0, 1}n to {1,−1}, then the codewords of the Hadamard code correspond to the linear functions,
namely the character functions χa.

In this language, the problem of list-decoding for the Hadamard code at relative distance 1/2− ε/2
can be stated like this. We are given a “corrupted codeword” f , which is nothing but some function
f : {0, 1}n → {1,−1}, and we want a list of all codewords χa such that f agrees with χa a 1/2−ε/2
fraction of the time, or equivalently

f̂a = E[f(x)χa(x)] ≥ ε.
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From this Fourier-analytic point of view, the list size of the Hadamard code can be bounded
immediately via Parseval’s identity: Every codeword χa in the list must contribute f̂2a ≥ ε2 to the
square sum of the Fourier coefficients, so there cannot be more than 1/ε2 codewords in the list.

But how do we find all these codewords? There are two algorithms for doing so. The original
algorithm of Goldreich and Levin has certain advantages, but today we show a different one, due
to Kushilevitz and Mansour, which is very natural from a Fourier-analytic perspective.

We will generalize our objective a little bit and seek to find all a such that f̂2a ≥ ε2, and maybe
even allow for a few as that don’t quite satisfy this condition. The idea is to try to locate these
relevant as by a divide-and-conquer strategy. One nice way to visualize this strategy is as a search
process along the following full binary tree of depth n. The root of this binary tree is labeled by
the value

∑
a∈{0,1}n f̂

2
a . Its left and right children are labeled by the partial sums∑

a : a1=0

f̂2a and
∑

a : a1=1

f̂2a .

In general, a node at level i can be indexed by a string v ∈ {0, 1}i and is labeled by the value∑
a : a1=v1,...,ai=vi

f̂2a

so that the leaf indexed by a is labeled by f̂2a .

Say a node v is relevant if its label is at least ε2. Although there are exponentially many nodes in
the tree, there can be at most n/ε2 relevant ones because the labels in each level sum to 1. If we
could calculate the labels, it would be easy to identify all the relevant nodes via depth-first search
starting at the root and pruning the search path at irrelevant nodes.

How do we calculate the values of the labels? Using the Fourier coefficient formula (1), we can
obtain these values in time exponential in n. But if we are willing to settle for a probabilistic
approximation, we can do much better. Let’s start at the leaves. From the formula (1) we get

f̂2a = E[f(x)χa(x)] E[f(y)χa(y)] = E[f(x)f(y)χa(x+ y)].

This suggests that to estimate f̂2a , we ought to sample some number of random pairs (x, y) and
output the average of the values f(x)f(y)χa(x+ y).

Now let v be an arbitrary node in the tree and FIX(v) be the set of those a ∈ {0, 1}n with
a1 = v1, . . . , ai = vi. We want to estimate the value∑

a∈FIX(v)

f̂2a = E f(x)f(y)
∑

a∈FIX(v)

χa(x+ y).

The set FIX(v) could be exponentially large so we have to be a bit careful here. Recall that
χa(z) = (−1)〈a,z〉 so: ∑

a∈FIX(v)

χa(z) =
∑

a∈FIX(v)

(−1)〈a,z〉

If z is nonzero along any of the coordinates i + 1 up to n, this sum vanishes; otherwise, it equals
2n−iχv(z). So the only (x, y) pairs that contribute to the sum are those in which x and y agree on
the last n− i coordinates, and we can rewrite the identity as∑

a∈FIX(v)

f̂2a = Ex′,y′∼{0,1}i,u∼{0,1}n−i [f(x′u)f(y′u)χv(x′ + y′)].
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Here, the first i bits x′ and y′ of x and y are chosen independently at random, while the last n− i
bits are random but identical in x and y. (When i = 0 the right side equals E[f(u)2] = 1, which is
a good sign.)

We now have all the ingredients for the Kushilevitz-Mansour algorithm. First, we have a probabilis-
tic procedure Ŝamp(f, v) which estimates the label of node v as follows: Sample O(n/ε4) random
triples (x′, y′, u) and output the average of the values f(x′u)f(y′u)χv(x′ + y′). The correctness of
this sampler follows from Chebyshev’s inequality:

Lemma 3. With probability 1− 20ε2/n, Ŝamp(f, v) outputs a value between `(v)/2 and 3`(v)/2,
where

`(v) =
∑

a : a1=v1,...,ai=vi

f̂2a .

Now here is the Kushilevitz-Mansour algorithm:

Algorithm KM: On input a function f : {0, 1}n → {0, 1} and ε > 0,
Apply the following recursive procedure P(v) starting with v equal to the empty string:

If Ŝamp(f, v) ≥ ε2/2:
If v has length n, output v.
Otherwise, call P(v0) and P(v1).

Theorem 4. With probability at least 1/2, the outputs of KM(f, ε) include all a such that f̂2a ≥ ε2,
but it produces no more than O(n/ε2) outputs in total.

Proof. Recall that there are at most n/ε2 nodes in the tree whose label is at least ε. By a union
bound, Ŝamp will output at least ε/2 on all these nodes with probability at least 3/4, and so all
a such that f̂2a ≥ ε will be included in the output of KM.

Let B be the set of nodes whose label exceeds ε2/3. There must be fewer than 3n/ε2 such nodes in
the tree, so they have fewer than 3n/ε2 + 1 children outside B. By a union bound, with probability
at least 3/4, Ŝamp will output a value smaller than than ε2/2 on all these children, so KM(f, ε)
will not make more than 3n/ε2 recursive calls to P.
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