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Fourier analysis allows us to represent general boolean functions f : {0, 1}n → R as a linear combi-
nation (over the reals) of the characters χa, i.e. the linear functions over {0, 1}. Since the characters
form an orthogonal basis in the linear space of all functions from {0, 1}n to R, this representation
always exists and is unique.

What if we want to represent f not only in terms of linear functions over F2, but also allow for
higher degree polynomials? Then the representation is no longer unique so we cannot describe
such representations in terms of formulas for coefficients like the Fourier coefficients. Instead let’s
look at some interesting applications of Fourier analysis and see if they can be generalized to the
higher-degree setting in a meaningful and interesting way.

Let’s start with the linearity test. Recall that to test if a boolean valued function f is linear, the
test chooses two random points x and y and accepts if f(x) + f(y) = f(x + y). If f is linear, the
test always accepts, and using Fourier analysis we showed that if f is δ-far from linear (i.e. f differs
from all linear functions on at least a δ-fraction of inputs), then the test rejects with probability at
least δ.

Can we design a similar test that accepts all polynomials of degree d, but rejects all functions which
are far from degree d polynomials with noticeable probability? For inspiration, let’s go back to
the linearity test. The starting point of the linearity test was the equivalence of two definitions of
linearity: A structural definition, which says f is linear if it has the form f(x) = a1x1 + · · ·+ anxn,
and a behavioral definition, which says that f is linear if f(x) + f(y) = f(x + y) for all pairs of
inputs x and y.

A structural definition for “f is a degree d polynomial” is straightforward: f is a degree d polynomial
if it can be written as a linear combination of monomials

∏
i∈S xi, where S has size at most d. How

about a behavioral definition?

1 Directional derivatives and Gowers uniformity

In calculus we learn that taking derivatives reduces the degree of polynomials. There is a similar
phenomenon in F2, if instead of derivatives we work with their discrete analogues.

Definition 1. For f : {0, 1}n → {0, 1} and a ∈ {0, 1}n, the derivative of f in direction a is the
function

Daf(x) = f(x+ a) + f(x).

If f is constant, then Daf(x) = 0. If f is affine, then Daf(x) = f(a), which is constant. More
generally, taking a discrete derivative reduces the degree by one. So if f is a degree (d − 1)
polynomial, then Da1 . . . Dadf = 0 for any choice of d directions a1, . . . , ad.

The converse is also true: If f is a {0, 1}-valued function such that Da1 . . . Dadf = 0 for all
a1, . . . , ad ∈ Fn, then f must have degree d− 1.

By analogy with the linearity test, we could hope to test if a function is a degree-(d−1) polynomial
by choosing x, a1, . . . , ad at random and accepting if Da1 . . . Dadf(x) = 0. The bias of this test is
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called the d-uniformity of f :

Ud[f ] = Ex,a1,...,ad∼{0,1}n [(−1)Da1 ...Dad
f(x)] = Eex,a1,...,ad∼{0,1}n [Da1,...,adf(x)],

where Ee[·] is shorthand notation for E[(−1)·] and Da1,...,ad is shorthand for Da1 . . . Dad . So f is
a degree-(d − 1) polynomial if and only if Ud[f ] = 1. In analogy with the linearity test, we may
expect that when the d-uniformity of f is bounded away from 1, then f is far from a degree-(d− 1)
polynomials.

To get some intuition let’s look at the case d = 2. We can write the 2-uniformity of f as

U2[f ] = Ee[Du,vf(x)] = Ee[f(x) + f(x+ u) + f(x+ v) + f(x+ u+ v)].

This expression resembles the bias of the linearity test, so we may hope to gain some insight about
its value by doing a Fourier expansion. Writing F (x) = (−1)f(x), we have

E[F (x)F (x+ u)F (x+ v)F (x+ u+ v)]

= E
[∑

a

F̂aχa(x)
∑
b

F̂bχb(x+ u)
∑
c

F̂cχc(x+ v)
∑
d

F̂dχd(x+ u+ v)
]

=
∑
a,b,c,d

F̂aF̂bF̂cF̂d E[χa(x)χb(x+ u)χc(x+ v)χd(x+ u+ v)]

=
∑

a∈{0,1}n
F̂ 4
a

because the only nonvanishing expectations are those where a = b = c = d. By Parseval’s identity,
the last expression is at most F̂ 2

a , so if Ud[f ] ≥ 1− δ, then F must be
√

1− δ-close to χa or −χa.
In other words, f is

√
1− δ-close to some affine function.

Can we extend this argument to larger values of d? It is tempting to try and work out a formula
with Fourier coefficients, but even for d = 3 it is not easy to make sense of this formula and
understand how it relates to degree 2 polynomials. Instead we will do a combinatorial analysis.

2 Analysis of the low-degree test

This analysis of the Gowers low-degree test is by Bhattarchaya, Kopparty, Schoenbeck, Sudan,
and Zuckerman. Their analysis concerns a slight variation of the Gowers test: They insist that
the directions a1, . . . , ad are linearly independent, but otherwise random. For large n, the proba-
bility of a linear dependency between goes to zero, so the rejection probability of the two tests is
asymptotically the same.

Degree-(d − 1) test Tn: Given a function f : {0, 1}n → {0, 1}, choose x ∼ {0, 1}n at random
and a1, . . . , ad at random from {0, 1}n provided they are linearly independent. If Da1,...,adf(x) = 0
accept, otherwise reject.

We can write this test more explicitly by expanding the formula for directional derivatives:

Da1,...,adf(x) =
∑

c∈{0,1}d
f(x+ ca) mod 2
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where x+ ca = x+ c1a1 + · · ·+ cdad.

Here we assume that n ≥ d; otherwise, any function can be represented as a degree-n polynomial
so the test can always accept. Clearly if f is a degree-(d− 1) polynomial, Td always accepts.

Theorem 2. There exist constants α0, α1 such that for every δ > 0, if f is δ-far from all degree-
(d− 1) polynomials, then Tn rejects f with probability at least min{α0, α1δ2

d}.

We do the analysis by induction on the number of inputs n. We’ll worry about the base case later.
Let’s make the inductive hypothesis that if f is a function in n− 1 inputs that is at least δn−1-far
from all degree-(d− 1) polynomials, Tn−1 rejects f with probability at least ρn−1 and see how the
analogous quantities ρn and δn for Tn relate to ρn−1 and δn−1.

We fix a degree-d polynomial f in n inputs that is δn-far from random. We want to lower bound
the probability ρn that Tn rejects f . When d > n, we can view the choice of a1, . . . , ad as happening
in two stages: First, we choose a random (n− 1)-dimensional affine subspace S of {0, 1}n, then we
choose a1, . . . , ad uniformly at random from S. So the rejection probability of Tn(f) can be written
as the average of the rejection probabilities Tn−1(f |S):

Pr[Tn rejects f ] = ES Pr[Tn−1 rejects f |S ]

where f |S is the restriction of f on S, which we can identify with {0, 1}n−1 under an appropriate
change of basis (the test is independent of the choice of basis).

We will argue as follows. If f |S is δn−1-close to a degree-(d − 1) polynomial on at least K of the
affine subspaces S, we will argue that f itself must be δn-close to a degree-(d−1) polynomial. (The
appropriate choice of K will come out of the calculation.) Since it is not, we get that

ρn ≥
(

1− K

2n

)
ρn−1

as there are 2n+1 − 2 ≥ 2n possible choices for the subspace S.

So now let’s assume that fS is δn−1-close to a degree-(d− 1) polynomial on at least K of the affine
subspaces S – let’s call them S1, . . . , SK – and see what we can say about f . We will need a variant
of the Schwarz-Zippel lemma for polynomials over F2:

Lemma 3. If p(x1, . . . , xn) is a nonzero degree d polynomial over F2, then Prx[p(x) 6= 0] ≥ 2−d.

Now let’s look at any two subspaces Si, Sj . We know f |Si and f |Sj are each δn−1-close to degree-
(d − 1) polynomials pi and pj defined over Si and Sj respectively. We claim that pi(x) = pj(x)
for every x in Si ∩ Sj : Otherwise, pi − pj would be a nonzero degree-(d − 1) polynomial which is
4δn−1-close to f |Si − f |Sj = 0 on Si ∩ Sj , which is impossible as long as δn−1 ≤ 2−(d+1).

This says the degree-(d− 1) polynomials that are close to f in various subspaces are all consistent
with one another. The following lemma (which you can try to prove) says that we can “glue” all
this information together into a single degree-(d− 1) polynomial:

Lemma 4. Let S1, . . . , SK be a collection of (d − 1)-dimensional subspaces of {0, 1}n and pi be a
degree-(d−1) polynomial on Si such that pi and pj agree on Si∩Sj for every pair (i, j). If K > 2d−1

there exists a single degree-(d− 1) polynomial p on {0, 1}n that agrees with pi on Si for every i.
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So if K > 2d−1 and δn−1 ≤ 2−(d+1), we get a single polynomial p of degree d− 1 that is δn−1-close
to f on all of S1, . . . , SK . We show that p has to be 2δn−1 + 4/K-close to f .

To show this, we can assume none of the subspaces Si, Sj are complementary, for otherwise the
claim is trivial. Otherwise let Ni(x) be an indicator for the event x ∈ Si, 1 ≤ i ≤ K. The random
variables Ni(x) when x is chosen at random have mean K/2 and are pairwise independent, so by
Chebyshev’s inequality

Pr[N1(x) + · · ·+NK(x) < K/4] ≤ 4/K.

Say x is good if N1(x) + · · ·+NK(x) ≥ K/4. Then the probability that x is good and f(x) 6= p(x)
is at least δn − 4/K. For a random choice of i, we get that

Pri,x[x ∈ Si and f(x) 6= p(x)] ≥ (δn − 4/K)/4

so for at least one i, the distance between f(x) and p(x) on Si must be at least (δn − 4/K)/2, and
so δn−1 must be at least this large.

Setting K = 1/δn−1, we conclude that if δn−1 ≤ 2−(d+1) and Tn−1 rejects functions that are at least
δn−1-far from having degree d− 1 with probability at least ρn−1, then Tn rejects functions that are
at least 6δn−1-far from having degree d− 1 with probability at least ρn = (1− 1/δn−12n)ρn−1.

We now sketch the proof of the theorem. The inductive statement we will prove is that Tn rejects
all functions that are at least δ-far from degree (d− 1) with probability at least min{εn/24, εnδ2

d}
where 1/2 ≥ εn ≥ εn−1(1− 2−n+d+1).

Suppose f is δ-far from having degree (d − 1). First suppose δ ≤ 2−d/2 and let p be the closest
degree d− 1 polynomial to f . Using the expanded form of the directional derivative, we have

Pr[Da1,...,adp(x) 6= 0]

≥ Pr[f(x+ ca) = p(x+ ca) for exactly one c]

= 2d Pr[f(x) = p(x) and f(x+ ca) 6= p(x+ ca) for all c 6= 0]

= 2d Pr[f(x) = p(x)] Pr[f(x) = p(x) and f(x+ ca) 6= p(x+ ca) for all c 6= 0 | f(x) = p(x)]

≥ Pr[f(x) = p(x)]
(

1−
∑

c 6=0
Pr[f(x+ ca) 6= p(x+ ca) | f(x) = p(x)]

)
= 2dδ(1− (2d − 1)δn · 2n/(2n − 1)) ≥ 2d−1δ.

In the second to last line we used the fact that for every nonzero c, the points x and x + ca are
two random distinct points in {0, 1}n. In this case the rejection probability is at least 2dδ/2 and
we are done.

Now suppose δ > 2−d/2. By the above analysis, in this case the test rejects with probability at least
(1−2−n+d+1)ρn−1, where ρn−1 is the rejection probability for Tn−1 at distance min{δ/6, 2−(d+1)} >
2−d/12. By inductive hypothesis, ρn−1 ≥ min{εn−1/24, εn−1(δ/6)2d−1} = εn−1/24, and we con-
clude that εn ≥ εn−1(1− 2−n+d+1) as desired.

Now we can iterate this statement to obtain

εn ≥ εd+3(1− 1/4)(1− 1/8) · · · ≥ εd+3/2

With a little bit more work it is possible to show that εd+3 ≥ 1/8, providing a base case and proving
the theorem.
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3 Low correlation with all low-degree polynomials

Let F be a family of functions from {0, 1}n to {1,−1} and G : {0, 1}n → {1,−1} be a function
outside F . The correlation between F and G is the maximum value of E[F (x)G(x)] over all F in
F .

For example, if F is the family of circuits of size s, then if we find a G that has correlation, say, at
most 0.9 with F we have proved that no circuit of size s can compute G on more than a 0.8 fraction
of inputs. Finding such explicit G is a difficult task, but using the tools from today’s lecture we
can construct functions that have very low correlation with all polynomials of degree d− 1 when d
is small compared to n.

Let’s start with linear functions. We are looking for a function g that has small correlation with all
linear functions or characters χa and their complements. Since E[G(x)χa(x)] = Ĝa, we are looking
for a function whose maximum Fourier coefficient is as small as possible in absolute value.

By Parseval’s identity we know that
∑

a Ĝ
2
a = 1, so there must exist a Fourier coefficient of absolute

value at least 2−n/2. Moreover, if this value is attained, then all Fourier coefficient must have the
same absolute value. Can we construct a g such that |Ĝa| = 2−n/2 for all a? When n is even, one
example is the inner product function G(x) = (−1)g(x)

g(x) = x1x2 + x3x4 + · · ·+ xn−1xn.

One way to see that |Ĝa| = 2−n/2 for all a is like this. A calculation shows that the Fourier
coefficients of (−1)xy all have absolute value 1/2. The Fourier coefficients of a product of functions
over disjoint inputs are the product of the Fourier coefficients of the respective functions. Since
G(x) is the product of n/2 copies of (−1)xy over disjoint inputs, all its Fourier coefficients must
have absolute value 2−n/2.

For larger d, we do not know in general what are the functions that minimize the correlation with
degree (d − 1) polynomials over F2, but we can give examples of functions with correlation as
small as 2−Ω(n) for any fixed d. One example is provided by the natural generalization of the inner
product to larger degrees:

Theorem 5. When n is a multiple of d, the function G(x) = (−1)g(x), where

g(x) = x1x2 . . . xd + · · ·+ xn−d+1xn−d+2 . . . xn

has correlation at most 2−Ω(n/d2d) with the family of degree (d− 1) polynomials over F2.

To prove this theorem, we will use the d-uniformity of g to bound the correlation between G and
the family of degree-(d − 1) polynomials. This is due to two very nice properties of Ud. Let g
be the {0, 1}-valued counterpart of G, so that G(x) = (−1)g(x). The correlation between G and
a polynomial p of degree at most d − 1 is given by E[G(x)(−1)p(x)] = Ee[g(x) + p(x)]; this is the
quantity we want to bound. Instead of expectations, we will work with d-uniformity. The first
observation is that

Ud[g + p] = Ud[g] for every polynomial p of degree at most d− 1

because derivatives are linear and taking d derivatives of a degree d − 1 polynomial make the

5



polynomial vanish. The second one is the sometimes called Cauchy-Schwarz-Gowers inequality:

Ud−1[g]2 = Ee[Da1,...,ad−1
g(x)]2

= Ea1,...,ad−1

[
Eex[Da1,...,ad−1

g(x)]
]2

≤ Ea1,...,ad−1

[
Eex[Da1,...,ad−1

g(x)]2
]

= Ea1,...,ad−1

[
Eex,y[Da1,...,ad−1

g(x) +Da1,...,ad−1
g(y)]

]
= Eea1,...,ad−1,x,y[Da1,...,ad−1,x+yg(x)]

= Ud[g]

Iterating this inequality we get that

Ee[g]2
d

= U1[g]2
d ≤ Ud[g].

Putting the two observations together, we get that the correlation of g with degree d−1 polynomials
is upper bounded by Ud[g]2

−d
.

To prove theorem 5 all we need to do is calculate Ud[g]. Just like Fourier coefficients, uniformity
measures are multiplicative for functions over disjoint inputs, so we have

Ud[g] = Ud[x1x2 . . . xd]n/d.

I don’t know how to calculate Ud[x1x2 . . . xd], but by the Schwartz-Zippel lemma we know that

Pr[p(x) 6= x1x2 . . . xd] ≥ 2−d

for every polynomial p of degree d− 1 or less. So the function x1 . . . xd is 2−d-far from all degree-d
polynomials. By Theorem 2, Da1...adx1 . . . xd is nonzero with at least constant probability, so

Ud[x1x2 . . . xd] ≤ 1− α for some α > 0.

It follows that the correlation between G and degree d − 1 polynomials is at most (1 − α)n/d2d as
promised.

6


	Directional derivatives and Gowers uniformity
	Analysis of the low-degree test
	Low correlation with all low-degree polynomials

