
CSCI 5060: Techniques in the theory of computing Lecture 8
The Chinese University of Hong Kong 7 March 2012

A pseudorandom distribution is one that appears uniformly random, but contains some correlations
between the inputs. Usually we are given a class of computations, or tests F = {f : {0, 1}n →
[−1, 1]}, and the objective is to design a pseudorandom distribution pr such that for every f in F ,

|Eu[f(u)]− Epr[f(pr)]| < ε, (1)

where u is the uniform distribution over {0, 1}n. An example we already saw of such a distribu-
tion are small-biased distributions. A distribution pr is ε-biased if it satisfies equation (1) for all
character functions χa(x) = (−1)〈a,x〉, where a ∈ {0, 1}n.

The support size of a distribution is the number of possible values in {0, 1}n that pr can take. In the
theory of pseudorandomness the objective is to construct small-biased distributions with as small
support size as possible. Recall that a small-biased distribution can be obtained by uniformly
sampling a column vector from a generator matrix of a linear code whose minimum distance is
at least (1 − ε)/2 and maximum distance is at most (1 + ε)/2. A straightforward extension of
the Gilbert-Varshamov bound shows that there exist small0biased distributions of support size
O(n/ε2).

Is this the best possible? Later in the class I hope to show a lower bound of Ω(n/ε2 log(1/ε)) on
the support size. But today I want to show a weaker argument that shows a lower bound of, say
poly(n)/ε1.9, provided ε is sufficiently small in terms of n. This will illustrate how small-biased
distributions interact nicely with the Fourier expansion of boolean functions and lead us to two
applications of small-biased distributions and Fourier analysis to pseudorandomness.

1 The support size of distributions with very small bias

Take an arbitrary function f . We rewrite the pseudorandomness requirement (1) as:

|Eu[f(u)]− Epr[f(pr)]| ≤ ε

If pr is an ε-biased distribution, then we can take the Fourier transform and rewrite the left-hand
side as

Eu[f(u)]− Epr[f(pr)] = f̂0 − Epr

[∑
a∈{0,1}n

f̂aχa(pr)

]
=
∑

a6=0
f̂a Epr[χa(pr)]

by linearity of expectation and because χ0 = 1. Taking absolute values and applying the triangle
inequality, we obtain

|Eu[f(u)]− Epr[f(pr)]| ≤
∑

a6=0
|f̂a| · |Epr[χa(pr)]|

and so
|Eu[f(u)]− Epr[f(pr)]| ≤ ε ·

∑
a6=0
|f̂a|. (2)
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This inequality holds for any boolean function f . By the Cauchy-Schwarz inequality, the left-hand
side is at most

ε ·
∑

a6=0
1 · |f̂a| ≤ ε

√∑
a6=0

1 ·
√∑

a6=0
f̂2
a ≤ ε · 2n/2. (3)

Now suppose we had an ε-biased distribution with support size, say, poly(n)/ε1.9 for every n and
ε. Plugging in ε = 0.1 · 2−n/2, we would get a distribution of support size less than 2n/2 that is
0.1-pseudorandom for the class of all functions {f : {0, 1}n → [−1, 1]}. In particular, let f be the
function that evaluates to 0 when x is in the support of pr, and 1 otherwise. Then

Epr[f(pr)] = 0 while Eu[f(u)] ≥ 1/2

which is a contradiction.

2 Branching programs

Inequality (2) tells us that small-bias distribution work well whenever one can show that the
quantity

∑
a6=0|f̂a| is not too large. Unfortunately, this does not happen too often. Certainly it

happens for the character functions χa. A simple model that generalizes these functions is that of
width two branching programs.

Imagine the following kind of computation. You read the input bits in some fixed in advance order,
repetitions allowed, say x3, x5, x2, x1, x3 again, x2 again, x4. In between reading consecutive
input bits, you can store one bit of information. The output of the computation is the last bit
in memory. This computation, called a branching program of width two, allows you to compute
all linear functions, but also functions like arbitrary ANDs of inputs and some more unusual ones
ones, like ((x1 ⊕ x2) ∨ x3) ∧ x2.

For the following claim it will be easier to think of the branching program as taking values 1 and
−1.

Claim 1. Let F : {0, 1}n → {−1, 1} be a branching program of width two that reads ` inputs,
possibly with repetitions. Then ∑

a

|f̂a| ≤ `+ 1.

Proof. By induction on `. When ` = 0, the only width two branching programs are the functions 0
and 1, for which the claim clearly holds. Now suppose it holds for width two branching programs
of length `. If F has length ` + 1, we can write F (x) = h(g(x), xi), where g(x) describes the first
`− 1 steps of the computation and h is the last step. Let G = (−1)g. The Fourier representation
of h : {0, 1}2 → {−1, 1} looks like this:

h(g, xi) = ĥ00 + ĥ10G+ ĥ01χ(xi) + ĥ11Gχ(xi)

= (ĥ00 + ĥ01χ(xi)) + (ĥ10 + ĥ11χ(xi))G.

and therefore
h(g(x), xi) = (ĥ00 + ĥ01χ(xi)) + (ĥ10 + ĥ11χ(xi))

∑
Ĝaχa(x).

By the uniqueness of the Fourier representation, we must have∑
|F̂a| ≤ (|ĥ00|+ |ĥ01|) + (|ĥ10|+ |ĥ11|)

∑
|Ĝa|.
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All of the coefficients ĥbc must be multiples of 1/2, and so by Parseval’s identity we must have
|ĥ00|+ |ĥ01| ≤ 1 and |ĥ10|+ |ĥ11| ≤ 1, from where the claim follows.

Therefore any ε-biased generator has bias at most ε(` + 1) against branching programs of width
two that read ` inputs.

Higher width? What about branching programs of width three? It turns out that this is not
the case anymore – there exist 2−Ω(n)-biased distributions that are not (say) 1/3 pseudorandom
against branching programs of width three. This is not too difficult to prove, but there are some
calculations, so let’s instead give a counterexample for branching programs of width four, which is
easier.

Assume n is even and consider the following distribution pr: Choose x1, . . . , xn uniformly at random
but conditioned on p(x) = x1x2 + x3x4 + · · · + xn−1xn = 0. Clearly the function P (x) = (−1)p(x)

(and therefore p(x) itself) is not fooled by pr, because E[P (pr)] = 1, while

E[P (u)] = E[(−1)u1u2 ]n/2] = (−1/2)n/2.

On the other hand, we have that pr is 2−Ω(n)-biased distribution. For every linear test a 6= 0, we
have the following two equations:

0 = E[χa(u)] = E[χa(u) | p(u) = 0] Pr[p(u) = 0] + E[χa(u) | p(u) = 1] Pr[p(u) = 1]

E[P (u)χa(u)] = E[χa(u) | p(u) = 0] Pr[p(u) = 0]− E[chia(u) | p(u) = 1] Pr[p(u) = 1]

from where

Epr[χa(pr)] = Eu[χa(u) | p(u) = 0] =
E[χa(u)P (u)

Pr[p(u) = 0]
=

E[χa(u)P (u)]

1/2 + (−1/2)n/2
.

But |E[χa(u)P (u)]| = |P̂a| = 2−n/2 by a calculation we did in the last lecture.

It is an open problem to design pseudorandom distributions with support size O(log n) for branching
programs of width three and higher. The answer is known in some special cases.

3 Low-degree polynomials

The last example shows the small-bias distributions also fail in general to be pseudorandom against
degree two polynomials over F2. How can one obtain pseudorandom distributions for low-degree
polynomials?

Let’s start with degree two polynomials. It turns out that degree two polynomials (in n inputs)
have a very simple structure. Up to an affine change of variables (and possible negation of the
output), each degree two polynomial is of the form (the operations are modulo 2):

p(x) = x1x2 + x3x4 + · · ·+ xk−1xk (+xk+1).

The number k is called the rank of p.

A simple but important fact is that ε-biased distributions remain ε-biased under affine transfor-
mations. So a polynomial of rank k looks to a small-biased distribution like a k-junta, that is a
function that depends on only k out of its n inputs. But a k-junta can be viewed as a function
from {0, 1}k to [−1, 1] and by equation (3) we get the following lemma:
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Lemma 2. Let f : {0, 1}n → [−1, 1] be a function that only depends on k of its inputs. Then

|Eu[f(u)]− Epr[f(pr)]| ≤ ε · 2k/2.

What if k is large? By the calculation from the previous section, the bias of f under the uniform
distribution is at most 2−k/2. So we know that in general a small-bias distribution will not work.

One nice thing about the rank is that it is invariant under addition of linear functions: The rank
of p(x) equals the rank of p(x) + 〈a, x〉. So if the rank of p is k, we can say that

|P̂a| = E[(−1)p(x)+〈a,x〉] ≤ 2−k/2 for all a ∈ Fn.

where P (x) = (−1)p(x). In other words, if the rank of p is large, then all its Fourier coefficients are
small, or p is very far from an affine function. Now recall our analysis of the degree-1 test from last
lecture from which

U2[p] = Eex,u,u′ [Du,u′p(x)] =
∑

a∈{0,1}n
P̂ 4
a ≤ maxa P̂

2
a = 2−k.

How is this useful for designing a pseudorandom distribution? Recall last time we showed that

Eeu[p(u)] = U1[p] ≤
√

U2[p]

We will describe a “pseudorandom version” Ũ of the uniformity U such that Ũd[f ] ≈ Ud[f ] for
every f and

Eepr[p(pr)] = Ũ1[p] ≤
√

Ũ2[p]. (4)

Assuming that U2[p] is sufficiently small, this will allow us to deduce that so are the quantities
U1[p], Ũ2[p], and Ũ1[p], and so Eeu[p(u)] and Eepr[p(pr)] must both be close to zero, therefore close
to one another.

Low-degree testing with less randomness Recall that the d-uniformity of a function is

Ud[f ] = Eex,a1,...,ad∼{0,1}n [Da1,...,adf(x)].

Now let
Ũd[f ] = Eex∼{0,1}n,e1,...,ed∼E [De1,...,edf(x)]

where e1, . . . , ed are independent samples some ε-biased distribution E. It turns out that Ũd[f ] is
a good approximation to Ud[f ] when ε is small:

Theorem 3. For every f : {0, 1}n → {0, 1}, |Ud[f ]− Ũd[f ]| ≤ dε.

To prove this theorem, we will use the following lemma, which we will study in more detail later
in the course.

Lemma 4. Let E be an ε-biased distribution and F,G : {0, 1}n → [−1, 1] be any two functions.
Then ∣∣Ex∼{0,1}n,e∼E [F (x)G(x+ e)]− Ex,y∼{0,1}n [F (x)G(y)]

∣∣ ≤ ε.
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Proof. We expand F and G by Fourier analysis. Notice that Ex,y∼{0,1}n [F (x)G(y)] = F̂0Ĝ0, while

Ex,e[F (x)G(x+ e)] = E
[∑

a

F̂aχa(x)
∑
b

Ĝbχb(x+ e)
]

= F̂0Ĝ0 +
∑
a6=0

F̂aĜa Ee[χa(e)].

Since e is ε-biased, |Ee[χa(e)]| ≤ ε for every nonzero a. By the triangle inequality, the difference
between the two absolute values is at most∑

a6=0

|F̂a| · |Ĝa|ε ≤ ε
√∑

a6=0
F̂ 2
a

√∑
a6=0

Ĝ2
a ≤ ε.

We can now prove Theorem 3 by induction on d. Let F (x) = (−1)f(x). When d = 1:

U1[f ] = Eex,a[Daf(x)] = Ex,y[F (x)F (y)] and Ũ1[f ] = Eex,e[Def(x)] = E[F (x)F (x+ e)]

and |U1[f ]− Ũ1[f ]| ≤ ε by Lemma 4. You can do the inductive step yourself.

Cauchy-Schwarz-Gowers for arbitrary distributions To obtain equation (4) we apply the
following generalization of the Cauchy-Schwarz-Gowers inequality (it is proved in a similar way):

Lemma 5. Let x, y, y′, a1, . . . , ad−1 be independent random variables in {0, 1}n. Assume y and y′

are identically distributed. Then

Eex,y,a1,...,ad−1
[Da1,...,ad−1

f(x+ y)]2 ≤ Eex,a1,...,ad−1,y,y′ [Da1,...,ad−1
Dy+y′f(x+ y)].

Iterating this inequality d times, we obtain

Eex,y1,...,yd [f(x+ y1 + · · ·+ yd)]2
d ≤ Eey1,...,yd,y′1,...,y′d [Dy1+y′1,...,yd+y′d

f(x+ y1 + · · ·+ yd)]

Now notice that if p is a polynomial of degree d, then Dy1+y′1,...,yd+y′d
p(x+y1+· · ·+yd)] is completely

independent of x, since taking d derivatives of a degree-d polynomial gives a constant. So we can
fix x = 0 and conclude that

Ee[p(y1 + · · ·+ yd)]2
d ≤ Ee[Dy1+y′1,...,yd+y′d

p(anything)].

Now if we set yi = ei, y
′
i = e′i, all independent copies of some ε-biased distribution, then y1 +

y′1, . . . , yd + y′d are also ε biased (in fact ε2-biased) so we get that

|Ee[p(e1 + · · ·+ ed)]| ≤ Ũd[p]1/2d

which in particular gives equation (4).

Let’s now recall what we showed for polynomials of degree two: If p has small rank, then under a
suitable change of basis it depends on few inputs, so to an ε-biased distribution e is looks like a
junta, and by Lemma 2 Eee[p(e)] ≈ Eeu∼{0,1}n [p(u)]. If p has large rank, then it has no correlation

with any linear functions so U2[p] is small, and so are in turn Eeu∼{0,1}n [p(u)], Ũ2[p], and finally
Eee1,e2 [p(e1 + e2)], where e1, e2 are independent samples from an ε-biased distribution. Working
out the parameters carefully we obtain that

Theorem 6. Let e1, e2 be independent copies of an ε-biased distribution. Then for every degree 2
polynomial p over F2,

|E[p(e1 + e2)]− E[p(u)]| = O(ε1/2).

The theorem generalizes to higher degree: If e1, . . . , ed are independent copies of an ε-biased dis-
tribution, then e1 + · · ·+ ed is O(ε1/2d−1

)-pseudorandom for the class of degree-d polynomials over
F2.
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