
CSCI 5060: Techniques in the theory of computing Lecture 9
The Chinese University of Hong Kong 14 March 2012

Boolean function analysis has become an indispensable tool in understanding the limits of approx-
imation algorithms for NP-optimization problems. These are problems where good solutions may
be hard to find, but once a solution is available its quality can be easily ascertained.

An important class of NP-optimization problems are constraint satisfaction problems. One famous
example is maximum satisfiability of 3CNF clauses, or MAX-3SAT. In this problem we are given
constraints of the form

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x2

x1 ∨ x2 ∨ x3.

and want to find an assignment that simultaneously satisfies as many of them as possible. In this
example setting x1 to false (0) and x2, x3 to true (1) satisfies all four constraints.

Another example is maximum solvability of linear equations modulo 2 with three variables per
equation, or MAX-3LIN. Instances of this problem look like this:

x1 + x2 + x3 = 1

x1 + x2 + x4 = 0

x1 + x3 + x4 = 1

x2 + x3 + x4 = 1.

Given such a system of equations, how many of them can we simultaneously satisfy? In this
example you can see that we cannot satisfy all four – since the left hand sides add to zero, while
the right hand sides add to one – but we can satisfy three out of the four, for example by setting
x1 = x2 = x3 = x4 = 1.

Both MAX-3SAT and MAX-3LIN are special cases of constraint satisfaction problems over binary
alphabet.

1 Constraint satisfaction problems

A q-ary constraint satisfaction problem (qCSP) over alphabet Σ is specified by a collection of
variables x1, . . . , xn taking values in Σ and a collection of constraints φ1, . . . , φm : Σq → {0, 1},
where constraint φj is associated with a sequence of q variables xj1 , . . . , xjq . We say an assignment
x = x1 . . . xn ∈ Σn satisfies constraint j if φj(xj1 , . . . , xjq) = 1. We say a qCSP instance is satisfiable
if there exists an assignment that simultaneously satisfies all the constraints.

In MAX-3SAT q = 3, Σ = {0, 1} and the constraints are disjunctions of literals. In MAX-3LIN,
q = 3, Σ = {0, 1}, and the constraints are linear equations in three variables modulo 2.

In general we are often interested in the following kind of problem: Given a qCSP instance where
the constraints are of a specific type, how should we go about finding an assignment that satisfies

1

as many of them as possible? We can always try brute-force search over all possible assignments,
but this takes exponential time.

Is it possible to do better? In the case of MAX-3SAT, the theory of NP-completeness tells us that
if we find an optimal solution substantially faster than by brute-force search, then we could do so
for every problem in NP, which is viewed as an unlikely state of things. This is true even if the
MAX-3SAT instance is completely consistent: Even if there exists an assignment that satisfies all
the constraints, finding such an assignmnent would take an inordinate amount of time in the worst
case.

What about MAX-3LIN? If all constraints are simultaneously satsifiable, then we can find a sat-
isfying assignment, i.e. a solution to the system of equations, by Gaussian elimination (or related
linear algebra techniques). But what the equations are inconsistent? Can we still find an assign-
ment that satisfies a large fraction of them? Notice that in expectation, a random assignment will
satisfy half the equations. It turns out that this is essentially the best possible performance any
efficient algorithm can guarantee in the worst case.

We will use the following terminology: We say a task is NP-hard if given an algorithm that achieves
this task in time at most t(n) ≥ n on all instances of size n, for every NP problem there exists
some other algorithm that solves all instances of size n in time t(p(n)) for some polynomial p. If
t(n) grows at a rate slower than 2n

ε
for every ε > 0 this is considered unlikely.

Theorem 1 (H̊astad). For any constants η, ε > 0 the following task is NP-hard: Given a MAX-
3LIN instance in which at least a 1 − η fraction of the constraints are simultaneously satisfiable,
return an assignment that satisfies at least (1 + ε)/2 of them.

The proof of this theorem consists of several steps, the last of which uses Fourier analysis. We will
work out that part carefully but first let us give a rough sketch of what happens before Fourier
analysis comes into play.

2 The PCP theorem and parallel repetition

The PCP theorem says that approximate optimization is hard in general, but does not give precise
quantitative information about the parameters involved:

Theorem 2. There exists an alphabet Σ and constants q and ε > 0 for which the following task
is NP-hard: Given a satisfiable qCSP instance over Σ, find an assignment that satisfies at least a
1− ε fraction of the constraints.

Once we have this general form of the theorem, we can make some simplifying assumptions. For-
mally, we will reduce the qCSP instance Φ from the PCP theorem to a 2CSP instance Ψ which also
satisfies the theorem and has some additional nice properties.

The instance Ψ two kinds of variables: In addition to the variables x1, . . . , xn from Ψ, it also has
variables y1, . . . , ym, each taking value in Σq. When x satisfies Φ, yj is supposed to encode the
restriction of x on coordinates (j1, . . . , jq).

The constraints of Ψ will encode two requirements: (1) that yj satisfies φj and (2) that y is
consistent with x (i.e. that the k-th coordinate of yj is indeed equal to xjk). Formally, Ψ will have

2

qm constraints ψjk(yj , xjk), 1 ≤ j ≤ m, 1 ≤ k ≤ q where

ψjk(yj , xjk) := φj(yj) is true and the kth coordinate of yj equals xjk .

Now suppose we have an algorithm that, given a satisfiable instance Ψ, finds an assignment sat-
isfying a 1 − ε/q fraction of constraints. We will use this algorithm to do the analogous thing for
Φ. So suppose Φ is satisfiable. Then by construction, so is Ψ, so we can find an assigmnent (y,x)
that satisfies 1− ε/q fraction of the constraints ψji. We claim that x must satisfy a 1− ε fraction
of the constraints φj . For if x violates some constraint φj , then it must be that either xjk differs
from the kth coordinate of yj , in which case ψji is violated, or if not then φj(yj) must be false,
so ψj1, . . . , ψjq are all violated. So every constraint φj that is violated by x yields at least one
constraint ψjk that is violated by (y,x).

This argument shows that without loss of generality, in Theorem 2 we may assume that q = 2 and
the instance is of the “type” Ψ. Specifically, we may assume that:

1. The instance is bipartite: The variables come partitioned into two sets y1, . . . , ym and x1, . . . , xn
so that the first variables in every constraint is some yi and the second variable is some xj ,

2. The constraints are projections: For every constraint ψji(yj , xi) and every assignment to yj ,
there is at most one assignment πji(yj) to xi that makes ψji(yj , xi) true. (For convenience
we relabeled the constraint ψjk(yj , xjk) to ψji(yj , xi).)

Parallel repetition What we will need in order to understand the hardness of MAX-3LIN is
following strenghtening of the PCP theorem:

Theorem 3. For every γ > 0 there exists an alphabet Σ such that the following task is NP-hard:
Given a satisfiable 2CSP bipartite instance with projection constraints over Σ, find an assignment
that satisfies at least a γ-fraction of the constraints.

The main difference between this statement and the original PCP theorem is that the algorithm
here is merely required to satisfy a small γ-fraction of the constraints, and not a 1 − ε fraction of
them for some small ε. One transformation that allows us to go from the original version to this
stronger version is parallel repetition.

Given a 2CSP instance Ψ, the t-fold parallel repetition Ψt of Ψ is the following 2CSP. If Ψ has
variables x1, . . . , xn, y1, . . . , ym taking values in Σ, then Ψt has nt variables xi1...it , i1, . . . , it ∈ [n]
and mt variables yj1...jt , where j1, . . . , jt ∈ [m], taking values in Σt. The “intended assignment” to
xi1...it is (xi1 , . . . , xit) and similarly for the ys.

The constraints of Ψt are as follows: For every t-tuple of constraints ψji1(yj1 , xi1), . . . , ψjit(yjt , xit)
of Ψ there is a constraint ψji1...jit(yj1...jt , xi1...it) which evaluates to true if ψjik evaluates to true on
the kth coordinates of yj1...jt and xi1...it for all k between 1 and t.

By construction, if Ψ is satisfiable so is Ψt (because if (x,y) is a satisfying assignment for Ψ then the
intended assigment induced by (x,y) is a satisfying assignment for Ψt). Now suppose an algorithm
managed to find an assignment (yt,xt) that satisfies a γ-fraction of the constraints of Ψt. We
would like to use this assignment to get an assignment (y,x) that satisfies a 1 − ε fraction of the
constraints of Ψ. If (yt,xt) was one of the intended assignments obtained from (y,x), we could

3

argue like this. Suppose (y,x) violated at least an ε fraction of the constraints ψji(yj , xi). Then a
random constraint ψji1...jit of Ψt is satisfied by (yt,xt) if and only if all the constraints ψji1 , . . . , ψjit
are satisfied simultaneously by (y,x). Since these are independent this happens with probability
at most (1− ε)t < γ if t is a sufficiently large constant.

Unfortunately, there is no reason to assume that (yt,xt) is one of the intended assignments and a
much more elaborate argument is necessary to complete the proof.

We will now show how to derive Theorem 1 from Theorem 3.

3 The long code

The proof strategy will go like this. We will take the 2CSP instance Ψ from Theorem 3 and reduce
it to a 3LIN instance. The reduction will look as follows. We replace each variable yj and xi (that
takes values in some large alphabet Σ) by a collection of variables Yj and Xi taking {0, 1}-values.
We will think of Yj , Xi as strings in {0, 1}n that “encode” the values of yj , xi. Then each constraint
ψji(yj , xi) will be replaced by a collection of 3LIN constraints which check three things: (1) Yj is
a proper encoding of some yj ; (2) Xi is a proper encoding of some xi; and (3) The string encoded
by Yj and the string encoded by Xi satisfy the projection constraint ψji.

To see how this may be possible let us first forget about the third requirement and focus on the
first two. Given a string x ∈ Σ, how can we come up with a boolean encoding X of x so that
proper encodings are specified by 3LIN constraints? In fact we already did this: If we take X to
be the Hadamard encoding of x, then the statement “X is a codeword of the Hadamard code” can
be represented by the linearity constraints X(s) + X(t) + X(s + t) = 0 for all s, t in the domain.
Our analysis of the linearity test showed that if X satisfied a (1+ε)/2 fraction of these constraints,
then it has correlation at least ε with some codeword of the Hadamard code.

Now suppose we have a single projection constraint ψ(y, x), where y and x take values in Σ. This
means for every y, there is at most one value x = π(y) which makes ψ(y, x) true. We are given
some encodings X of x and Y of y and we want to encode the statement x = π(y) into a collection
of 3LIN formulas. If X is the Hadamard encoding of x, then X(s) = `s(x), where `s is the linear
function 〈s, ·〉. Similarly, if Y is the Hadamard encoding of y, then Y (t) = `t(y). How can we check
that x = π(y)? Suppose we observe X at position s and Y at position t. We would expect to see
the values `s(x) and `t(y). If we chose s and t so that `t and `s ◦ π are the same function, then we
could simply check that X(s) = Y (t) and this would give us evidence that x = π(y). Notice that
the constraint X(s) = Y (t), or X(s) + Y (t) = 0, is a 2LIN constraint.

Unfortunately, unless we are very lucky with π, `s ◦ π will not be a linear function at all. This
suggests that it may be helpful to extend the encoding X. The Hadamard encoding of x tells us
the value of all linear functions at x, but it seems that we may also want to know the values of
some nonlinear ones. But as long as we can handle some nonlinear functions, why not handle all
of them?

The (binary) long code over message set Σ encodes a message a ∈ Σ by a string dicta in {1,−1}2|Σ|
.

Each position of the long code is indexed by a string s ∈ {0, 1}Σ – which can also be viewed as
(the truth-table of) a function s : Σ → {0, 1} – and the encoding of a at position s is given by
dicta(s) = (−1)sa . A corrupted codeword f could be any function {0, 1}Σ → {1,−1}, and the
actual codewords are the dictator functions dicta.

4

A dictatorship test We now need a test for the long code based on 3LIN constraints. We have
the linearity test as a starting point. This test always accepts all the dictator functions f(s) = sa,
but unfortunately it also accepts all the other linear functions `c(s) = 〈c, s〉 for |c| > 1. Can we
weed out those functions where |c| > 1?

We won’t quite achieve this, but here is one idea about how we can distinguish between light cs and
heavy cs. Let η be a small constant and choose a pair s, n from {0, 1}n independently by according
to different distributions. We choose s from the uniform distribution, while each coordinate of n
is chosen from the η-biased distribution. This means each coordinate is chosen independently at
random but takes value 1 with some small probability η and value 0 with probability 1− η.

Now consider the event `c(s) = `c(s+ n). The probability of this event is 1
2(1 + (1− 2η)|c|). When

|c| = 1 this probability is 1 − η which is close to one, but as |c| becomes larger the probability
approaches 1/2 at an exponential rate. So if given `c we choose a random c and accept if `c(s) =
`c(s + n), we are much more likely to accept dictators than linear functions that depend on a lot
of variables.

Now we combine this idea with the linearity test: Given a function F : {0, 1}n → {1,−1}, choose
inputs s, t uniformly at random and n from the η-biased distribution and accept if F (s)F (t)F (s+
t+ n) = 1.

This test accepts all dictator functions with probability 1− η. Let’s see what we can say about F
if the test accepts it with probability at least (1 + ε)/2:

ε ≥ Es,t,n[F (s)F (t)F (s+ t+ n)]

=
∑
a,b,c

F̂aF̂bF̂c Es,t,n[χa(s)χb(t)χc(s+ t+ n)]

=
∑
a,b,c

F̂aF̂bF̂c Es[χa+c(s)] Et[χb+c(t)] En[χc(n)]

=
∑
a

F̂ 3
a En[χa(n)] =

∑
a

F̂ 3
a

∏
i : ai=1

Eni [(−1)ni] =
∑
a

F̂ 3
a (1− 2η)|a|.

Let k be the smallest integer so that (1− 2η)k+1 ≤ ε/2. Then by Parseval’s identity∑
a : |a|>k

F̂ 3
a (1− 2η)|a| ≤ (1− 2η)k ≤ ε/2

and so
ε/2 ≤

∑
a : |a|≤k

F̂ 3
a (1− 2η)|a| ≤ maxa : |a|≤k F̂a

so F must have correlation ε/2 with some character χa with |a| ≤ k, in particular a k-junta. While
we cannot say that such an F is related in any way to a dictator, this weaker conclusion will be
sufficient for what we need.

4 Hard instances of MAX-3LIN

Given a 2CSP instance Ψ as in Theorem 3, we now show how to construct a 3LIN instance Ξ as
in Theorem 1. We start with a satisfiable instance Ψ, argue that in the corresponding Ξ at least a

5

1−η fraction of constraints can be satisfied, apply an imaginary algorithm that finds an assignment
satsifying at least (1 + ε)/2 of the constraints, and show how to convert it into an assignment that
satisfies a γ-fraction of the constraints of Ψ, where γ = Ω(ηε3).

For each variable xi of Ψ taking values in Σ, we introduce 2|Σ|−1 boolean variables Xi in Ξ. Similarly
for every yj we introduce such variables Yj . The intended assignments to Xi and Yj are the long
code encodings of xi and yj , namely the truth-tables of the dictator functions dictxi and dictyj with
one small modification.

For a technical reason, it will be convenient to work with a slightly less redundant encoding. The
dictator functions are odd: dicta(s) = −dicta(s). So it is enough to specify the encodings Xi(s)
only for half of the inputs s; the value at the other inputs can be interpolated from the formula
Xi(s) = −Xi(s) and similarly for the Yjs. This transformation is called folding.

We now describe the constraints of Ξ. We will specify what a random constraint of Ξ looks like. To
get the instance consisting of all the constraints, we make a list of all possible random constraints.

A random constraint of Ξ is created by the following experiment. We first choose a random
constraint ψij of Ψ. We now want a linear constraint that involves exactly three of the boolean
variables among Xi, Yj and “checks” that if we view Yj and Xi as a possibly corrupted long code
encodings, then the value encoded by Yj projects to the value encoded by Xi according the the
projection πij specified by ψij .

To understand what this constraint should look like, suppose two of the variables involved in the
constraint are Xi(s) and Yj(t). What should the third one be? In the intended assignment, Xi(s)
and Yj(t) are the dictator functions sxi and tyj , where xi and yj satisfy the projection constraint
πij(yi) = xj . Recall that we need to check three things: (1) that Xi(s) looks like a dictator sx; (2)
that Yj(t) looks like a dictator ty and (3) that πij(y) = x. To achieve this, we have the following
three tests:

Xi(s)Xi(s
′)Xi(s+ s′ + n) = 1 dictatorship test for Xi

Yj(t)Yj(t
′)Yj(t+ t′ + n) = 1 dictatorship test for Yj

Yj(s ◦ πij) = Xi(s) consistency test for πij .

Doing these tests separately is wasteful. Instead we roll all three of them into one:

Xi(s)Yj(t)Yj(s ◦ πij + t+ n) = 1

where s and t are chosen uniformly at random, and n is chosen from the η-biased distribution.

Suppose Ψ has a satisfying assignment (x,y). Let Xi and Yj be the long code encodings dictxi
and dictyj of the ith entry of x and the jth entry of y respectively. The probability that a random
constraint of Ξ is satisfied is

Pri,j,s,t,n[dictxi(s)dictyj (t)dictyj (s ◦ πij + t+ n) = 1]

= Pr[sxityj (s ◦ πij)yj tyjnyj = 1] = Pr[sxityjsπij(yj)tyjnyj = 1] = Pr[nyj = 1] = 1− 2η.

If Theorem 1 was false, we would be able to efficiently find some other assignment X1, . . . , Xn,
Y1, . . . , Ym that satisfies a (1+ε)/2 fraction of constraints of Ξ. We show how to use this assignmnent
to produce a new one (x,y) that satisfies a γ-fraction of the constraints of Ψ.

Since X1, . . . , Xn, Y1, . . . , Ym satisfies a (1 + ε)/2 fraction of constraints of Ξ, we must have

Ei,j [Es,t,n[Xi(s)Yj(t)Yj(s ◦ πij + t+ n)]] ≥ ε

6

so by Markov’s inequality, Es,t,n[Xi(s)Yj(t)Yj(s ◦ πij + t + n)] ≥ ε/2 for at least ε/2 of the pairs
(i, j).

Fix such a pair and to simplify notation let X = Xi, Y = Yi, π = πij . Applying Fourier expansion
we get

ε/2 ≤ Es,t,n[X(s)Y (t)Y (s ◦ π + t+ n)]

=
∑
a,b,c

X̂aŶbŶc Es,t,n[χa(s)χb(t)χc(s ◦ π + t+ n)]

=
∑
a,b,c

X̂aŶbŶc Es[χa(s)χc(s ◦ π)] Et[χb(t)χc(t)] En[χc(n)].

Clearly Et[χb(t)χc(t)] = 1 when b = c and 0 otherwise and En[χc(n)] = (1− 2η)|c|. The term

Es[χa(s)χc(s ◦ π)] = Ees[〈a, s〉+ 〈c, s ◦ π〉] = Ees

[∑
x

sx

(
ax +

∑
y : π(y)=x

cy

)]
.

Let odd(c)x =
∑

y : π(y)=x cy. This term vanishes unless a = odd(c). So we get∑
c

Ŷ 2
c X̂odd(c)(1− 2η)|c| ≥ ε/2.

Let k be the smallest integer so that (1− 2η)k+1 ≤ ε/4. Then by Parseval’s identity∑
c : |c|>k

Ŷ 2
c X̂odd(c)(1− 2η)|c| ≤ ε/4

and so

ε/4 ≤
∑

c : |c|≤k

Ŷ 2
c X̂odd(c)(1− 2η)|c|

≤
∑

c : |c|≤k

Ŷ 2
c |X̂odd(c)|

≤
√ ∑
c : |c|≤k

Ŷ 2
c

√ ∑
c : |c|≤k

Ŷ 2
c X̂

2
odd(c)

≤
√ ∑
c : |c|≤k

Ŷ 2
c X̂

2
odd(c).

The second-to-last line follows by the Cauchy-Schwarz inequality and the last one uses Parseval’s
identity.

Now consider the following probabilistic algorithm for creating an assignment to Ψ: For every
variable yj , first choose c ∈ {0, 1}Σ with probability Ŷ 2

j,c, then choose yj uniformly at random from

all y such that cy = 1. Similarly, for every xj , choose a ∈ {0, 1}Σ with probability X̂2
j,a, then choose

xj uniformly at random from all x such that ax = 1.

(But what if we happened to choose a = 0 or c = 0 and no choice of x and y is possible? This will
never happen because of the folding. Folding guarantees that exactly half of the entries of X and
Y are ones, and so X̂2

0 = Ŷ 2
0 = 0.)

7

We now argue that in expectation, this assignment satisfies at least a γ fraction of constraints of
Ψ. Fix a “good” pair (i, j) for which Es,t,n[X(s)Y (t)Y (s ◦ π+ t+n)] ≥ ε/2. We will show that the
constraint ψ = ψij is satisfied with probability at least ε2/16k. By the calculation we just did∑

c : |c|≤k

Ŷ 2
c X̂

2
odd(c) ≥ ε

2/16

What is the probability that ψ is satisfied, i.e that π(y) = x when x and y are chosen as above?
Suppose we happened to choose a = odd(c). Then for every x such that ax = 1, there must exist at
least one y such that cy = 1 and π(y) = x (since the number of such y is odd). So the probability
of choosing a y such that π(y) = x is at least 1/|c| and

Pra,c,x,y[π(y) = x] ≥
∑
c

Ŷ 2
c X̂

2
odd(c)

1

|c|
≥

∑
c : |c|≤k

Ŷ 2
c X̂

2
odd(c)

1

k
≥ ε2

16k

Since at least an ε/2 fraction of pairs (i, j) is good, in expectation the assignment will satisfy at
least an ε3/16k fraction of the constraints. It is possible to make this assignment explicit but let’s
not worry about that.

8

	Constraint satisfaction problems
	The PCP theorem and parallel repetition
	The long code
	Hard instances of MAX-3LIN

