Please turn in your solution in class on Tuesday 5 November. You are required to work and write your solutions individually.

Question 1

Let $x_{1}, \ldots, x_{10} \in\{0,1\}^{100}$ be 10 strings of 100 bits each. The distinctness function $\operatorname{DIST}\left(x_{1}, \ldots, x_{10}\right)$ takes value 1 if all strings are distinct $\left(x_{i} \neq x_{j}\right.$ when $\left.i \neq j\right)$ and 0 otherwise.
(a) Show that any deterministic read-once branching program for $D I S T$ (that reads its input from left to right) must have width at least 2^{490}.
(b) Let $h:\{0,1\}^{100} \rightarrow\{0,1\}^{10}$ be a random function. Show that with probability at least 95%, $\operatorname{DIST}\left(h\left(x_{1}\right), \ldots, h\left(x_{10}\right)\right)=\operatorname{DIST}\left(x_{1}, \ldots, x_{10}\right)$ for any fixed choice of inputs.
(c) Show that DIST can be computed by a randomized read-once branching program of width at most 2^{200} with error at most 5%.

Question 2

Let X be an n by n matrix and $f:\{0,1\}^{n^{2}} \rightarrow\{0,1\}$ be the function

$$
f(X)= \begin{cases}1, & \text { if } f \text { has exactly one column consisting of zeros only } \\ 0, & \text { otherwise }\end{cases}
$$

Determine the following quantities up to a constant factor (i.e., in $\Theta(\cdot)$ notation). Provide both upper and lower bound proofs.
(a) the deterministic query complexity $D(f)$
(b) the exact degree $\operatorname{deg}(f)$ when f is viewed as a real-valued polynomial
(c) the sensitivity $\operatorname{sens}(f)$
(d) (Extra credit) the Monte Carlo randomized query complexity $R_{1 / 3}(f)$
(e) (Mini-research project) the quantum query complexity $Q_{1 / 3}(f)$

Question 3

A solution generator for a search relation $R \subseteq\{0,1\}^{*} \times\{0,1\}^{*}$ is an algorithm G that on input (x, ℓ) outputs the ℓ-th lexicographically smallest y such that $(x, y) \in R$, and the special symbol \perp if such a y does not exist. For example, if $(0,0),(0,10),(0,111) \in R$ but $(0, y) \notin R$ for all other y then $G(0,1)=0, G(0,2)=10, G(0,3)=111$, and $G(0, \ell)=\perp$ for all other ℓ. We say that a solution generator is efficient if its running time is polynomial in $|x|$ and ℓ.
(a) Prove that the search relation $R_{\mathrm{DNF}}=\{(\phi, y): \phi$ is a DNF such that $\phi(y)=1\}$ (a DNF is an OR of ANDs of literals) has an efficient solution generator.
(b) Prove that if the search relation $R_{\mathrm{CNF}}=\{(\phi, y): \phi$ is a CNF such that $\phi(y)=1\}$ (a CNF is an AND of ORs of literals) has an efficient solution generator then $\mathrm{P}=\mathrm{NP}$.
(c) Prove that if $\mathrm{P}=\mathrm{NP}$ then every NP search relation has an efficient solution generator.

