
CSCI 5170: Computational Complexity Lecture 1
The Chinese University of Hong Kong, Fall 2019

Computational complexity is the mathematical study of efficiency. It is concerned with identi-
fying models of efficient computation and understanding their power, their limitations, and their
relationships.

In the first half of the 20th century the primary discipline concerned with computation was com-
putability theory. The main insight of computability is that some problems like deciding whether
a piece of code is eventually going to terminate are unsolvable by computer programs regardless
of the resources available. By the 1960s it was realized that even leaving these undecidable prob-
lems aside, there are a whole lot of other problems that are in principle solvable by methods like
brute force, but for which even the best known algorithms take an enormous amount of time on
reasonably sized inputs.

These insights led to the development to a theory of efficient computation, which turned out relevant
not only for the immediate task into classifying computations, but also enabled the development
of whole new areas of computer science such as cryptography, learning theory, verification, and
computational game theory. Many of the foundational insights in all these areas turn out to be
about efficiency. Another subject at the forefront of scientific research today whose study was
largely driven by questions of efficiency is quantum computing.

My aim in this course is to highlight those concepts and methods in computational complexity which
I believe have wider significance. These should give you the ability to “see” efficient computation
everywhere in the world and in your research, identify suitable models, and reason about them.

To get a sense of what is an efficient model of computation, what we might want to know about it,
and what kinds of methods are “legitimate” for answering these questions, let’s start with one of
the simplest examples: the decision tree. But before that we need to introduce and motivate some
conventions for describing computational problems.

1 Computational problems

Many of the computational problems we may be interested in can be described as functions. The
function takes as its input a data item or a sequence of items as they may appear, say, in a
computer’s memory, hard drive, or “on the cloud”. Its answer is the outcome of the computation
(which we will assume always terminates) in a similar format. For example, the problem “What
is the fastest way from Wan Chai to CUHK by bus?” might have maps and bus schedules as its
input and your itinerary as its output.

Data items are usually described by bit sequences. Not only are bits the storage and processing
unit of choice for most general-purpose computers, but even if this is not the case it is usually easy
to convert whatever representation the data was stored in into bit representation. This is not where
the real computational difficulty lies.1

We usually represent computational problems as functions that map a sequence of input bits into
one or more output bits. Even in the case when the inputs and outputs are objects of another
type we will think of them as being represented by sequences of bits. For example, if we study the
problem of finding the prime factorization of a positive integer n, then n is given in binary, and its

1In some parts of computational complexity (e.g., arithmetic complexity) it is more natural to work with other
representations.

1



prime factorization is also described as a sequence of bits, one for each prime factor, with a suitable
convention for representing the whole sequence as a single bit string.

A computational problem is a function whose domain is one set of bit sequences and whose range is
another set of bit sequences. Should the domain and range be finite or infinite? This choice turns
out to be surprisingly important. Let us try to motivate it by some examples.

When we talk about algorithms for “finding a shortest path” or “factoring an integer” in the
abstract, we would like our algorithm to work in principle for all inputs, so an infinite domain and
range seem better suited for such study. You may object, however, that in practice we are unlikely
to ever see any input an output that is more than say 2500 bits long, so shouldn’t it be enough
to restrict our domain and range to the sets {0, 1}2500? While this is a reasonable objection, it is
difficult to imagine anything interesting about these problems that happens only for inputs and
outputs that are at most 2500 bits long; any algorithm designed for inputs that are 2500 bits long
should in principle also work for arbitrarily long inputs. It is more natural to represent the domain
and/or range of such problems as infinite sets, in which case the problem itself is a function from
{0, 1}∗ to {0, 1}∗, the set of all possible bit sequences. The part of complexity theory that studies
such problems is called (for reasons to be explained later) uniform complexity. The computational
study of algorithms, and also proofs, is more natural in the setting of uniform complexity.

On the other hand, a cryptographic function like AES-256 is an algorithm that may only take inputs
that are 256 bits long and always produces outputs that are 256 bits long. It is a specific design that
is believed to have certain cryptographic properties and is simply not equipped to handle inputs
or produce outputs of a different length. In (applied) cryptography, it is common to fix the size
of the problem to be solved (e.g., “exchange a 1024-bit key”) and then design an algorithm for a
problem of this size. We model such problems as functions f : {0, 1}n → {0, 1}m for some a priori
fixed lengths n and m. The part of complexity theory that studies them is called non-uniform
complexity or circuit complexity. Apart from cryptography, non-uniform computational models are
also more common in computational learning theory. For example, if we want to train a neural
network to recognize shapes, we usually decide in advance on the size of the network and then run
our learning algorithm of choice to calculate its relevant parameters.

A decision problem is a computational problem with a yes/no answer, like “is graph G connected?”.
Such problems are represented by functions f : {0, 1}∗ → {0, 1} and f : {0, 1}n → {0, 1} in uniform
and non-uniform complexity, respectively.

2 Decision trees

A decision tree for inputs of length n is a rooted binary tree whose vertices and edges are labeled as
follows. Each of its internal nodes is labeled by one of the variables x1, . . . , xn, and its two outgoing
edges are labeled by the values 0 and 1 respectively. Each leaf is labeled by a 0 or by a 1. Here is
an example:

2



x1

0

0

x2

x3

0

0

1

1

0

x3

1

0

0

1

1

1

A decision tree computes a function f : {0, 1}n → {0, 1} in a natural way: Query the variable at
the root, follow the edge labeled by its value, and continue until a leaf is reached, then output its
value. The above decision tree computes the function x1 and (x2 xor x3). The following decision
tree computes the same function:

x2

x1

0

0

x3

0

0

1

1

1

0

x3

x1

0

0

1

1

0

0

1

1

The first decision tree is in some sense preferable than the second one as it is smaller. This is our
first example of a complexity measure: The size of a decision tree is its number of leaves.2

It is not difficult to see that any function f : {0, 1}n → {0, 1} can be computed by a sufficiently
large decision tree like this:

x1

decision tree for f(0, x2, . . . , xn)

0

decision tree for f(1, x2, . . . , xn)

1

The size of this decision tree is 2n. Can we do much better?

The counting argument

We will now show that in general, the answer is “no”:

Theorem 1. For all n there exists a function f : {0, 1}n → {0, 1} that requires decision tree size
at least 2n/4n.

2We could have also defined size as number of nodes, which is twice the number of leaves minus one. Working
with leaves will be more convenient for us.

3



Proof. First, we show that the number of decision trees of size s with n variables is at most
(n · s2)s−1. A tree of size s has s − 1 internal nodes. To specify a decision tree it is sufficient to
describe each internal node’s label and the identities if its left and right children (if they exist).
There are n possibilities for each label and at most s possibilities for the identity of each child (any
one of the other s− 2 internal nodes or the constants 0/1 in case of a leaf), which gives a total of
(n · s2)s−1 choices.

On the other hand, the number of functions from {0, 1}n to {0, 1} is 22n . If 22n were larger than
(n · s2)s−1, or equivalently if 2n were larger than (s− 1) log(n · s2), then there would be at least one
function that is not computed by any decision tree of size s. You can verify that this is the case
when s = 2n/2n.

This type of proof is called a counting argument. It has several appealing features. First, it applies
to virtually any non-uniform model of computation that one can think of. Indeed, the proof uses
almost nothing particular to decision trees.3 Second, it is quite insensitive to details: If I didn’t
distinguish between internal nodes and leaves the end result would have been almost the same.
Third, there is a variation of the counting argument which not only tells us that there exists a
“hard” function for decision trees, but also that a vast majority of such functions are hard:

Theorem 2. For all n the probability that a random function F : {0, 1}n → {0, 1} can be computed
by a decision tree of size 2n/4n is at most 2−2n−1

.

Proof. To bound the probability that a random function is computable by some decision tree of
size s, we apply a union bound:

PrF [some decision tree of size s computes F ] ≤
∑
T

Pr[T computes F ]

where the summation ranges over all decision trees T of size s. The probability of any single such
tree computing F is exactly 2−2n , as the value of the function computed by T must match the value
of a random function at all points. From the proof of Theorem 1 the number of decision trees of size
s is at most (n ·s2)s−1, so the expression on the right is at most (n ·s2)s−1 ·2−2n = 2(s−1) log(n·s2)−2n .
When s = 2n/4n, (2s− 1) log(n · (2s)2) is at most 2n−1 by a very similar calculation as in the proof
of Theorem 1 and we get the desired result.

The main drawback of the counting argument is that it does not give us hold of an explicit function
f that is hard for decision trees. Intuitively, “explicit” means that despite the existence of f with
the desired property, we are at a loss when it comes to “writing down” a “nice expression” for it.
The term “explicit” has a precise meaning, and we will define it properly once we become more
comfortable with complexity-centric ways of thinking about computation.

An explicit hard function

The parity function on n bits is the function

PARITY (x1, x2, . . . , xn) = x1 xor x2 xor · · · xor xn.

It takes value zero when an even number of its inputs are ones, and value one otherwise.

Theorem 3. PARITY requires decision tree size 2n.

3In fact, for decision trees it is possible to prove a better bound of Ω(2n/ logn).

4



Proof. Let T be any decision tree for PARITY . We claim that T cannot contain any path of
length strictly less than n: Regardless of the values that the fewer than n inputs along this path
take, the value of the PARITY function is undetermined after reading them, so the leaf of the
path cannot be labeled either 0 or 1. As all n-bit edge label prefixes along paths must all lead to
different leaves, T must have at least 2n leaves.

Theorem 3 is in some sense more satisfying than Theorem 1: Here is an explicit function, one that
we can clearly write down and calculate at will, that cannot be computed by small decision trees.
(The lower bound in Theorem 3 also better than the one in Theorem 1, but that is an unusual
feature of this specific example.) What more could be possibly want? Well, one drawback of this
argument is that it is specifically tailored to the PARITY function. What if we want to know,
say, the decision tree size of some other function, like MAJORITY (assuming n is odd)?

MAJORITY (x1, . . . , xn) =

{
1, if the input has more 1s than 0s,

0, if the input has more 1s than 1s.

A more general approach for proving lower bounds on decision tree size is to identify a relevant
property that all small decision trees satisfy, but the “hard” function of interest does not satisfy. In
the case of the PARITY function, the crucial property is that no assignment to fewer than n inputs
determines the value of the function. Let us give this property a name: Say f is k-undetermined
if no partial assignment to any k of the inputs fixes the value of the function. Thus PARITY is
(n − 1)-undetermined, while MAJORITY is (n − 1)/2-undetermined. The proof of Theorem 3
readily generalizes to the following statement:

Theorem 4. Any k-undetermined function requires decision tree size 2k+1.

As a corollary, MAJORITY of n inputs requires decision tree size 2(n+1)/2. It is not difficult to
prove an even better bound of 2n−o(n). Instead of doing this, let us introduce a different method
that will yield a weaker bound for MAJORITY but will enable us to analyze more powerful models
of computation in the next lecture.

3 Random restrictions

A restriction of the variables x1 up to xn is a partial assignment that gives each of the variables the
value 0, the value 1, or leaves it unassigned. Such a restriction can be succinctly represented as a
string ρ in {0, 1, ?}n, where a ? means that the corresponding variable is unassigned; for example,
01?0? is the restriction x1 = 0, x2 = 1, x4 = 0, x3 and x5 unassigned.

Given a function f : {0, 1}n → {0, 1} and a restriction ρ ∈ {0, 1, ?}n, the restricted function f |ρ(x) is
obtained by substituting the variables assigned by ρ with the corresponding constants, for example

f |01?0?(x3, x5) = f(0, 1, x3, 0, x5).

The input size of f |ρ equals the number of stars in ρ.

A δ-random restriction is a restriction that sets each coordinate independently to ? with probability
δ ∈ [0, 1] and 0 and 1 with probability (1 − δ)/2 each. Some very simple functions, like the AND
of n bits, are typically “killed” by random restrictions when n is large: If any of the input is
restricted to zero the AND function vanishes, so the probability that AND does not vanish is at
most (1/2 + δ/2)n, which is exponentially small in n for say δ = 1/10. By the same reasoning, the

5



OR of n bits is also typically killed by a random restrictions, and so are ORs and ANDs of literals
(possibly negated variables), such as

x1 and (not x2) and (not x3) and x4 and (not x5) · · · and xn.

All these functions have decision trees of size n. Is it the case that random restrictions kill decision
trees as well? Not always so, but they do simplify them greatly:

Theorem 5. For every f computable by a decision tree of size s and a δ-random restriction ρ, the
probability that f |ρ requires a decision tree of depth at least d is at most s · (1/2 + δ/2)d.

The depth of a decision tree is the maximum length of a path from root to leaf. This theorem
reduces the problem of showing that f has no small decision tree to showing that the related
function fρ has no shallow decision tree (with sufficient probability). But depth is a much easier
complexity measure to analyze than size.

For example, it is immediate that the decision tree depth of MAJORITY on n bits is at least
(n+ 1)/2: any shorter root-to-leaf path can query at most half the inputs, which is insufficient to
determine their majority value. In fact, the decision tree depth must be n: If the inputs “seen”
by the decision tree are a 0, then a 1, then a 0, then a 1, and so on, then the majority cannot be
determined until all n bits are read.

To apply this theorem, we need to analyze the decision tree depth not of MAJORITY itself, but
of its random restrictions. Before we do so let’s prove Theorem 5.

Proof of Theorem 5. Let T be a decision tree of size s for f and p be a root-to-leaf path in T . We
will assume, without loss of generality, that all variables that appear along p are distinct. We will
say that p is killed by ρ if there exists a variable along p that ρ fixes to a value different from the
one on its outgoing edge. For example, the root-to-leaf path

x2
0−→ x4

0−→ x1
1−→ 0

is killed by the restriction 0?00 as the value of x1 in ρ is inconsistent with the value on its outgoing
edge. After substituting the non-starred variables in ρ by their values in T and removing all the
paths that are killed, we obtain a decision tree for the function f |ρ.

To conclude that the decision tree depth of f |ρ is at most d, it is therefore enough to show that all
paths of length d or more are killed by the restriction. The probability that a given path p is not
killed by ρ equals (1/2 + δ/2)length of p, as for the path to survive each value along p must be either
unfixed by ρ or fixed to the value along its outgoing edge. As there are at most s such paths, we
can upper bound the probability of the complement event by a union bound:

Pr[f |ρ requires decision depth at least d] ≤ Pr[some length ≥ d path of T is not killed by ρ]

≤
∑

paths p in T of length ≥ d
Pr[p is not killed by ρ]

≤ s · (1/2 + δ/2)d.

On the other hand, even after a random restriction, MAJORITY is not too likely to have small
decision tree depth:

Claim 6. Assuming (1− δ)n/2 is an integer, with probability Ω(1/n), MAJORITY |ρ on n inputs
has decision tree depth at least δn.

6



Proof. Consider the event that exactly (1−δ)n/2 of the inputs are fixed to 0, exactly (1−δ)n/2 are
fixed to 1, and the remaining δn are unfixed by ρ. If this is the case, MAJORITY |ρ is a majority
of its unfixed δn inputs, and so it has decision tree depth (at least) δn. The probability of ρ having
exactly (1− δ)n/2 zeros, (1− δ)n/2 ones, and δn stars is Ω(1/n).

From Theorem 5 and Claim 6 it follows that if MAJORITY on n bits has a decision tree of size
s then s · ((1 + δ)/2)δn = Ω(1/n), so s = Ω((2/(1 + δ))δn/n). When δ = 0.46 (any δ works but this
is roughly the best value), this yields a lower bound of s = Ω(1.156n).

4 Disjunctive normal form

A formula in disjunctive normal form (DNF) of size s is an OR of s clauses, each of which is an
AND of (distinct) literals. For example, distinctness of two n-bit strings x, y ∈ {0, 1}n can be
expressed as a DNF of size 2n:

DISTINCT (x, y) = (x1 and not y1) or (not x1 and y1)

or · · · or (xn and not yn) or (not xn and yn).

In terms of size, DNFs capture a larger class of efficient computations than decision trees:

Theorem 7. If f has a decision tree of size s, then it has a DNF of size at most s.

Proof. Let T be a decision tree for f of size s. For every path p of T that leads to a 1-leaf introduce
a clause cp that looks like this: Each variable xi in p appears in cp as literal xi if its outgoing edge
is a 1-edge and as literal not xi if its outgoing edge is a 0-edge. The resulting DNF accepts exactly
those inputs that lead to 1-leaves of T , so it computes the function f .

So DNFs are at least as strong a model of computation as decision trees. Are they stronger? To
answer this question in the positive, we need to come up with a function that requires a large
decision tree but admits a small DNF. It turns out that our usual suspects from the previous
section — “most functions”, PARITY , and MAJORITY — are not of much help here. I suggest
that you try writing small DNFs for these functions to get some intuition why this is so. In the
next lecture, we will in fact show that the PARITY and MAJORITY functions require cannot be
represented by DNFs of size sub-exponential in the input length n.

Could it then be the case that DNFs of size s are equivalent to decision trees of size s, or maybe
that they can be represented by decision trees of somewhat larger size, say s2 or s10? Not so: In
the homework you will show that DISTINCT (for input size 2n) requires decision trees of size 2n

or more. This example shows that there can be an exponential gap in the size of the smallest DNF
and the smallest decision tree for the same function. In the homework you will also show that the
gap can never be more than exponential.

To conclude, today we saw two examples of non-uniform models of computation, namely decision
trees and DNFs. We saw several ways to argue that certain functions that cannot be computed by
small decision trees. We then stated a separation between these two models: DNFs of a given size
are at least as powerful as decision trees of that size, but in the other direction there exist DNFs
of size s that require decision tree size 2Ω(s) for infinitely many s.

7


	Computational problems
	Decision trees
	Random restrictions
	Disjunctive normal form

