
CSCI 5170: Computational Complexity Lecture 2
The Chinese University of Hong Kong, Fall 2019

In Lecture 1 we saw examples of functions that are hard to compute by small decision trees. Today
we will study the complexity of two more general models of computations: Formulas in disjunctive
normal form (DNFs) and small depth circuits.

One seemingly powerful method for proving size lower bounds for decision trees that we saw was
the method of random restrictions. We showed that a small decision tree becomes shallow with
high probability after a random restriction (while functions like PARITY and MAJORITY don’t).
This property of random restrictions generalizes to DNFs. It goes by the name of “the Switching
Lemma”.

1 The switching lemma

In the last lecture we defined a δ-random restriction of the variables x1, . . . , xn (taking {0, 1} values)
to be an random assignment where each coordinate is set independently to ? with probability δ and
to 0 and 1 with probability (1− δ)/2 each. Under this definition, the number of stars in a random
restriction is a random variable, although one that is heavily concentrated around its mean value
of δn (as long as δn is not too small). For today’s lecture it will be convenient to slightly modify
this definition so that the number of stars in the restriction always equals exactly u = δn. This
will simplify the proof of our switching lemma but make little difference in its applications.

Let n be the number of variables and u be a number between 0 and n. A u-restriction is an
assignment ρ ∈ {0, 1, ?}n in which exactly u of the n coordinates are stars. A u-random restriction
is a random assignment chosen uniformly from the set of all u-restrictions. It can be generated like
this: First, set exactly u out of the n coordinates to ? uniformly at random. Then set each of the
remaining n−u coordinates independently to 0 or 1 with equal probabilities. (The number of zeros
and ones may not be the same.)

The width of a DNF is the width of its widest clause, where the width of a clause is the number of
literals in it. Width measures the amount of processing that the AND gates in the DNF have to
perform in parallel. For example, the width of the following DNF φ is 3. (A bar denotes negation
and concatenation denotes AND.)

φ = x1x3 or x1x3x5 or x2x3 or x3x6 or x4x6. (1)

Theorem 1 (The switching lemma). Assume u ≤ n/2. For every f : {0, 1}n → {0, 1} computable
by a DNF of width w and a u-random restriction ρ, the probability that f |ρ requires a decision tree
of depth d is at most (8wu/n)d.

The switching lemma says that a DNF of sufficiently small width is likely to simplify after a
random restriction. In particular, it implies that DNFs of small width cannot compute functions
like PARITY or MAJORITY (you will show this in the homework). Let’s understand why this
should be the case. Suppose that some DNF of width w computed the PARITY function. Look at
the first clause of this DNF. There must exist a fixing of the w variables in this clause that sets its
value, and therefore the value of the whole DNF to 1. On the other hand, the value of PARITY
is undetermined until all n of its variables are set, so PARITY requires DNF of width n.

Remarkably, the switching lemma makes no reference to the size of the DNF, although this is
arguably the more natural complexity measure that we are interested in. The reason that Theorem 1
is also relevant for size is that any small DNF is likely to become narrow after a random restriction:

1

Claim 2. Assume w ≤ n/4. For every f : {0, 1}n → {0, 1} that has DNF size s and a n/2-random
restriction ρ, the probability that f |ρ requires a DNF of width w is at most s · (7/8)w.

Before we prove this simple claim, let’s introduce some notation that will be useful later. Given a
DNF φ and a restriction ρ, the restricted DNF φ|ρ is the DNF obtained by substituting the partial
assignment ρ into φ and performing the following simplifications: (1) If any clause evaluates to 1,
set φ|ρ to 1; (2) if not, eliminate from φ|ρ all the clauses that evaluate to 0. For example, for the
above DNF φ and ρ = 11?0??,

φ|ρ = x3x5 or x3 or x3x6. (2)

This definition is purely syntactic, unlike our definition of f |ρ for a function f from last lecture,
which is semantic. It could be the case, for example, that given a DNF φ, the restriction ρ simplifies
the function computed by φ to a constant, yet the formula for φ|ρ is not a constant. Nevertheless,
if the DNF φ computes function f , then the DNF φ|ρ will certainly compute the function f |ρ.

Proof of Claim 2. Let φ be a size s DNF for f . We show that the probability that φ|ρ has a clause
of width w or more is at most s ·(7/8)w. Each surviving clause in φ|ρ can only be narrower than the
corresponding clause in φ, so it is enough to show that the probability that some clause of width
w or more survives ρ is at most s · (7/8)w.

The probability that any given such clause survives ρ is at most (7/8)w: Each literal is killed with
probability 1/4. If the assignments were independent, the probability of survival would have been
exactly (3/4)w. Under our model for ρ, the probability that the (j + 1)-st variable is killed given
that all previous variables have survived is at least (n/2− j)/n · 1/2, the product of the probability
that it gets a non-starred value and the (conditional) probability that it gets the “killer” value.
Under our assumptions this is at least 1/8, so the probability that at least one variable doesn’t
survive is at least (7/8)w. To finish the proof, we take a union bound over all clauses of width at
most w.

From Theorem 1 and Claim 2, it follows easily that PARITY requires DNFs of exponential size.
To see this assume that there is a size s DNF for PARITY on n variables. By Claim 2, there
exists a n/2-restriction ρ and a DNF of width w = 6 log s for PARITY |ρ. By Theorem 1 with
u = n/50 log s, there is a O(n/ log s)-restriction ρ′ so that the function obtained by applying
restriction ρ′ to PARITY |ρ is constant (i.e. it has decision tree depth zero). But if s < 2n/50, the
composition ρρ′ of the two restrictions still has an unrestricted variable, so PARITY |ρρ′ cannot be
a constant function.

2 Proof of the switching lemma

To prove the switching lemma, we will upper bound the number of “bad” restrictions ρ for which
f |ρ does not have a decision tree of depth less than d. The counting is done in an indirect way: We
will show that each such u-restriction ρ can be uniquely described by a (u− d)-restriction κ plus a
small amount of “auxiliary information”. Ignoring the auxiliary information for a moment, let us
see how this type of argument goes towards proving Theorem 1. The number of u-restrictions is(
n
u

)
2n−u, and if every bad u-restriction uniquely maps to some (u − d)-restriction, the probability

that a random u-restriction is bad would be at most(
n

u− d

)
2n−(u−d)

/(n
u

)
2n−u which is at most

(u

n− u

)d
2d ≤ (4u/n)d.

2

which is better than what we promised.

Let’s think of the map as a game between an Alice who wants to communicate a restriction ρ to
Bob by a message shorter than ρ itself. We assume that both Alice and Bob know the formula φ.

An example To be concrete, let’s take again φ to be the DNF (1) and ρ = 11?0??. Then φ|ρ
is the DNF (2). Alice takes the first clause of φ|ρ, in this case the clause x3x5. She then finds the
unique partial assignment α that makes x3x5 true, namely x3 = 0 and x5 = 1. The restriction κ is
obtained by extending ρ with the assignment α: Alice sends κ = 11001? to Bob.

Can Bob now recover ρ from κ? The issue is that Bob does not know which of the 0s and 1s in κ
came from the assignment α and which were originally present in ρ. But Bob can try to reverse-
engineer Alice’s steps. Applying the restriction κ to the φ, Bob sees that the first clause x1x3

vanishes under κ, so it is not the clause set by Alice. However, the next clause x1x3x5 evaluates to
1 under κ, so Bob knows that the partial assignment α only involves some of the variables x1, x3, x5.
But which ones of the three were set by ρ and which were set by α? To allow Bob to determine
this, Alice sends as additional information the identities of the variables among x1, x3, and x5 that
were starred in ρ and set in α.

To summarize, Alice encodes the restriction ρ = 11?0?? by the pair (κ, aux), where κ is the
restriction 11001? and aux describes variables x3 and x5 within the clause x1x3x5. One way to
describe these two variables is to specify their set of indices, namely aux = 35. A more succinct
encoding is to give the set of indices within the clause x1x3x5, namely aux = 23, referring to the fact
that x3 and x5 are the second and third variable within this clause. For the proof of the switching
lemma it is essential that Alice and Bob make use of the latter encoding. Upon receiving this
information, to recover ρ, Bob looks for the first clause of φ that is set to 1 by κ and replaces the
variables indexed by aux with stars, where the indexing refers to the order in which the variables
appear within this clause.

So far we have shown how to encode (for this specific width 3 DNF φ) our 3-restriction ρ by a
1-restriction κ together with 3− 1 = 2 entries of auxiliary information, each taking values between
1 and w. Extrapolating from this example, the encoding represents a u-restriction ρ by a (u− d)-
restriction κ and a string aux with d symbols in the set {1, . . . , w}, where d is the width of the first
surviving clause of φ|ρ. The probability that a clause of width d or more survives the restriction is
therefore at most

number of (u− d)-restrictions

number of u-restrictions
· wd ≤

(u

n− u

)d
2dwd = (2wu/(n− u))d

which has the form that we want. However, d here refers to the width of the first surviving clause,
while we want it to be the depth of the best decision tree for f |ρ.

To make further progress, a natural idea is to fix more variables in ρ by applying the encoding
recursively to κ. This appears to be a non-starter, as φ|κ = 1. What Alice and Bob will do
instead is agree to extend ρ to another restriction ρ′ which also fixes the variables x3 and x5, but
to different values than in κ, so that the clause x3x5 does not become true under ρ′. There are
three such possible assignments for x3x5: 00, 01, and 11. Among these three, which one should
Alice choose? Setting x3 to 1 is not a good idea as it makes the second clause of φ|ρ true, thereby
impeding further progress. Alice picks the partial assignment β which sets x3x5 to 00 (it doesn’t
matter which of the remaining two in this case), extends ρ by β to obtain ρ′ – in this case ρ′ = 11000?
– communicates ρ′ to Bob succinctly by specifying the partial assignment 00, and then iteratively
encodes ρ′ by editing the relevant parts of κ and supplying the required auxiliary information.

3

Encoding and decoding In general, Alice will use the following procedure to encode her re-
striction ρ. We assume Alice and Bob share the formula φ, but the restriction ρ is only known to
Alice.

Procedure Enc: On input ρ ∈ {0, 1, ?}n,
Set κ = ρ, ρ′ = ρ, and aux to the empty string.
Until φ|ρ′ is a constant repeat the following:

Let c|ρ′ be the first clause of φ|ρ′ and c the corresponding clause of φ.
Let α be the partial assignment that sets c|ρ′ to true.
Let β be the partial assignment to c|ρ′

that maximizes the decision tree depth of the function φρ′β.
Extend κ by α and ρ′ by β.
Append to the tail of aux

the list of variables set by α (and β) indexed by their position in c and
their values in β

Append the symbol · to aux.
Output the pair (κ, aux).

Before stating the properties of this procedure, let us run thru our example φ from (1) and ρ =
11 ? 0 ? ?. In the first iteration, we obtain as described above

φ|ρ′ = x3x5 or x3 or x3x6, c = x1x3x5 c|ρ′ = x3x5 α = 01 β = 00.

At the end of this iteration, κ, ρ′, and aux become

κ = 11001? ρ′ = 11000? aux = 2300·

as the second and third variable in c|ρ′ both take value 0 in ρ′. So in the next iteration, we have

φ|ρ′ = x6, c = x3x6 c|ρ′ = x6 α = 1 β = 0.

At the end of this iteration, κ = 110011, ρ′ = 110000 and aux = 2300 ·20·. Since φ|ρ′ is now a
constant, Enc(ρ) terminates with the encoding

Enc(ρ) = (110011, 2300·20·).

which Alice sends to Bob.

Bob recovers ρ from the pair (κ, aux) by applying Alice’s steps in reverse:

Procedure Dec: On input (κ, aux):
Let ρ = κ and ρ′ = κ.
Loop through the parts a of aux separated by dots:

Let c be the first clause of φ satisfied by ρ′.
Replace the entries indexed by a in ρ by stars.
Replace the same entries in ρ′ by the corresponding assignment in a.

Output ρ.

Initially, ρ = 110011 and ρ′ = 110011. Bob begins by finding the first clause of c that is set to 1
by ρ′, in this case c = x1x3x5, and then modifies ρ and ρ′ by resetting the values of x3 and x5 as
described in the first part of aux to obtain

ρ = 11?0?1 ρ′ = 110001.

In the next iteration, c = x3x6. The sceond part of aux says that the second variable x6 in this
clause was set to 0 in ρ′, so we recover

ρ = 11?0?? and ρ′ = 110000.

4

Properties of the encoding In general, one can prove the following claim:

Claim 3. For every partial assignment ρ, Dec(Enc(ρ)) = ρ, and so Enc is an injective map.

We now argue that if φ|ρ has a large decision tree, then κ contains a lot fewer stars than ρ:

Claim 4. If φ|ρ requires decision tree depth d > 0, then κ has at least d fewer stars than ρ.

Proof. We prove the claim now by strong induction on d. When d = 0 there is nothing to prove.
Now assume it is true for all values smaller than d. The assignment β is chosen so as to maximize
the decision tree depth of the function φ|ρβ. Since d > 0, φ|ρ is not constant. If its first clause c|ρ
contains v variables then we will show that decision tree depth of φ|ρβ must be at least d− v. By
inductive hypothesis, κ had at least d− v fewer stars than ρβ, so it has at least d fewer stars than
ρ.

Suppose, for contradiction, that for every partial assignment β to these variables, φ|ρβ had a decision
tree of depth less than d − v. We can then construct a decision tree for φ|ρ of depth less than d:
First query the v variables in c|ρ. For the unique assignment that sets c to true output 1. For every
other assignment β, run the decision tree for φ|ρβ. This is a decision tree for φ|ρ of combined depth
less than d.

By a small modification of the encoding procedure, we can in fact ensure that κ has precisely d
fewer stars than ρ (assuming φ|ρ requires decision tree depth d): Once exactly d starred variables
in ρ are assigned values in κ, the encoding procedure halts. This does not affect the correctness of
the decoding, so the encoding map remains injective.

To summarize, we have shown that every u-restriction ρ such that φ|ρ requires decision tree depth
d can be uniquely described by a (u − d)-restriction κ together with some auxiliary information
aux. If A is the set of all possible values for aux, it follows that

Prρ[φ|ρ requires decision tree depth d] ≤ number of (u− d)-restrictions κ

number of u-restrictions ρ
· |A|

=

(
n
u−d
)
2n−(u−d)(

n
u

)
2n−u

· |A|

≤ (2u/n)d|A|

so all that remains to do is to bound the size of A. To specify aux, we need to give d symbols taking
values in the set {1, . . . , w} (describing variables within a clause), an additional d symbols taking
0, 1 values (assignments to these variables), some of which are followed by a dot. If we extend
the assignment alphabet from {0, 1} to {0, 1, 0·, 1·} to account for the dots, we conclude that aux
can take at most wd · 4d possible values, so |A| ≤ (4w)d. The desired probability is then at most
(8wu/n)d, which is what we needed to prove.

3 Small depth circuits

An AND/OR circuit of unbounded fan-in is a directed acyclic graph1 in which the nodes are assigned
the following labels: Each source node is labeled by exactly one of the literals x1, . . . , xn, x1, . . . , xn,
while the other nodes are labeled by and or or . In addition, each of the m sinks gets a unique
label among y1, . . . , ym. (If there is only one sink we might not bother assigning it a label.)

1It is curious that circuits should be acyclic, but this is the standard terminology in computational complexity,
probably tracing its roots back to the origins of computing devices in electrical engineering.

5

A circuit computes a function from {0, 1}n to {0, 1}m in a natural way: The inputs (x1, . . . , xn)
and their negations (x1, . . . , xn) are plugged in at the source, and then the values of the internal
nodes are computed until the outputs (y1, . . . , ym) are found.

The size of the circuit is the number of nodes, excluding the source nodes. Its depth is the length of
the longest path from source to sink. Size represents the length of the program, or number of gates
in a piece of hardware modeled by the circuit. Depth is the time it takes to evaluate the circuit in
parallel (assuming the gates at distance t from the input are evaluated at time step t).

ANDs and ORs of literals are circuits of depth 1, while a DNF is a circuit of depth 2. A natural
question to ask is how the depth of circuits affects their computational power. When the depth is
small, the switching lemma is a powerful tool for analyzing such circuits.

Theorem 5. If f : {0, 1}n → {0, 1} is computable by a circuit of size s and depth d and ρ is a
n/(K log s)d−1-random restriction then the probability that f |ρ requires a decision tree of depth t is
at most d/s+ 2−t, where K is some constant.

The error probability can be made to vanish faster by choosing different constants, but let’s stick to
this statement for concreteness. To prove the theorem we will apply the switching lemma iteratively,
arguing that at each step the bottom layer of gates vanishes with high probability over the choice
of random restriction.

Proof. By the same proof as in Claim 2, if ρ0 is an n0 = n/2 random restriction the probability
that any of the gates at level 1 has fan-in more than 20 log s is at most 1/s. Assuming this is
not the case, namely all level 1 gates have fan-in at most 20 log s after applying ρ0, all expressions
computed at level 2 are DNFs or CNFs (complements of DNFs) of width at most w = 20 log s.

By Theorem 1, if we set n1 = n0/200 log s, the probability that any of the DNFs or CNFs does
not simplify to a decision tree of depth at most w under a n1-random restriction ρ1 is at most
s · (8wn1/n0)20 log s ≤ 1/s. Assuming all level 2 functions do simplify, the level 3 gates of the circuit
are now ORs or ANDs of decision trees of depth at most w. By Theorem 6 from Lecture 1, each
such decision tree can be expanded as a DNF, or by an analogous argument a CNF, of width w.
The top gate of these DNFs or CNFs can then be merged with a level 3 gate of the same type,
thereby reducing the depth of the circuit by 1.

Let ρ be the restriction obtained by applying ρ0, ρ1, . . . , ρd−1 in this order. If ni is the input size
of f |ρ0...ρi for i ≥ 1 then ρi+1 is an ni+1-random restriction with ni+1 = ni/200 log s. At each
step except for the last one, the probability that the depth of the circuit does not decrease is at
most 1/s. In the last step, we apply Theorem 1 with depth parameter t. By a union bound, with
probability at least 1− d/s− 2−t the depth reduces at each step. In this case f |ρ is a decision tree
of depth w.

The number of unrestricted variables in ρ is n0/(200 log s)d−1 = 1
2n/(200 log s)d−1 as desired.

Applying Theorem 5 to the PARITY function, we conclude the following:

Theorem 6. If a circuit that computes PARITY on n bits has depth d, its size must be 2Ω(n1/(d−1)).

Proof. If n > (K log s)d−1 in the notation of Theorem 5, then PARITY |ρ is not a constant function,
but f |ρ has a decision tree of depth 0 (and is therefore constant) with some probability for any
f that admits a circuit of size s and depth d. Therefore PARITY cannot be computed by such
circuits. Choosing the smallest value of n gives s = 2Ω(n1/(d−1)).

6

This bound for the PARITY function is tight as circuits of depth d and size 2O(n1/(d−1)) for
PARITY on n bits do exist. A slightly weaker lower bound can be proved for the MAJORITY
function as well.

4 Circuits with parity gates

A model of computation that cannot compute parities is not particularly realistic. What if, in
addition to ANDs and ORs, we allow the circuit to have PARITY gates as well? Then the circuit
won’t simplify by a random restriction anymore so we need a different property to tell apart such
circuits from complex functions. The relevant property turns out to be approximability by low-
degree polynomials. To explain this we need a bit of algebra.

Let’s use + and · to represent XOR and AND of bits, respectively. (In mathematical jargon this is
the field F2 of two elements.) Then every function from {0, 1}n to {0, 1} can be uniquely expanded
as a multilinear polynomial of degree at most n. For example, PARITY of 3 bits is x1 + x2 + x3,
while MAJORITY of 3 bits is x1x2 + x2x3 + x3x1.

Each function has a unique polynomial representation of this type. One way to calculate is to start
with “point functions” that evaluate to 1 at exactly one input, for example f(x) = 1 only when
x = 110. This function is reperesnted by the polynomial x1x2(1 + x3). Since every function is a
sum of point functions, we can get a polynomial for it by summing up over its points. One way
to see that the polynomial is unique is that there are as many functions as there are polynomials:
To specify a polynomial I have to tell whether to include or not the any of the 2n monomials
1, x1, x2, x1x2, etc. So there are 22n multilinear polynomials, just as many as there are functions.

One measure of simplicity of polynomials is their degree. In this sense PARITY is a simple function
because it has degree 1 regardless of the number of variables. On the other hand, OR is not so
simple because OR of n bits is represented by 1 + (1 +x1) · · · (1 +xn) which has degree n. However
this complication occurs only “at one point”: If we were only interested in approximating the value
of OR on most inputs, then the constant 1 would be a perfectly good candidate.

Unfortunately this notion of approximation does not compose well: If polynomials p, q1, . . . , qn
approximate the functions f, g1, . . . , gn, it might not be the case that the composed function
p(q1(x), . . . , qn(x)) approximates f(g1(x), . . . , gn(x)) well. But there is a different probabilistic
notion of approximation that does compose well.

A probabilistic polynomial P is a probability distribution over ordinary polynomials. On any given
input x, the value of P (x) is a {0, 1} random variable. We’ll say P approximates f with error ε if
P (x) = f(x) with probability 1− ε for every x (for a random P). The (deterministic) polynomial
1 no longer approximates the OR function betause P (0) 6= 1(0) with probability 1. Nevertheless,
there is a polynomial of fairly low degree that does!

Claim 7. OR of n bits can be approximated by a probabilistic polynomial of degree log 1/ε with
error ε.

Proof. Suppose I take a random parity of the input x by including each bit in it independently
with probability half. If x = 0 then the parity will always be 0. If x = 1 it will evaluate to 1 with
probability at least 1/2 regardless of the input. The reason is that if I make all the random choices
before the i-th one for any position such that xi = 1, the i-th random choice is equally likely to
result in zero and one values.

The polynomial of interest is P (x) = 1+(1+P1(x)) · · · (1+Pd(x)), where P1, . . . , Pd are independent
random parities and d = log 1/ε. If x is zero so is P (x). If x is nonzero the probability that at

7

least one of P1(x), . . . , Pd(x) evaluates to 1 is 1− 2−d = 1− ε, in which case P also does.

Since AND(x1, . . . , xn) = 1 +OR(1 + x1, . . . , 1 + xn), it too has a probabilistic polynomial of the
same degree. As promised approximations can be composed.

Claim 8. If P,Q1, . . . , Qn approximate f, g1, . . . , gn respectively with error ε then P (Q1, . . . , Qn)
approximates f(g1, . . . , gn) with error (n+1)ε (assuming P is sampled independently from Q1, . . . , Qn).

Proof. For any given input x, an error occurs if g1(x) 6= Q1(x) or g2(x) 6= Q2(x) and so on, or if
f(g1(x), . . . , gn(x) 6= P (g1(x), . . . , gn(x)). Each of these events occurs with probability at most ε,
so by a union bound none occur except with probability (n+ 1)ε.

Each time we compose a polynomial of degree d with polynomials of degree d′ the new degree
becomes d · d′. If we have an AND/OR/PARITY circuit of size s and depth d and replace each
of the AND/OR gates by an independent polynomial with error ε, the resulting polynomial will
have degree (log 1/ε)d and approximate the circuit with error at most sε. If we set for example
ε = 1/16s we obtain the following consequence:

Theorem 9. Any AND/OR/PARITY circuit of size s and depth d can be approximated by a
polynomial of degree (log 16s)d with error at most 1/16.

Since on any given input, a random polynomial in the family is accurate 15/16 of the time, the
best polynomial must be accurate on a 15/16 fraction of inputs, so there must be an ordinary
degree-(log 16s)d polynomial p such that p and the circuit agree on 15/16 of the inputs.

This suggests that if we look for a hard function for such circuits, we should look for functions
that are not only hard to compute but also hard to approximate by low-degree polynomials.
MAJORITY is precisely such a candidate:

Theorem 10. Every polynomial of degree at most 0.01
√
n disagrees with MAJORITY on n bits

on more than 15/16 of the inputs.

In conclusion, if a size-s depth-d AND/OR/PARITY circuit were to compute MAJORITY on n
inputs it has to satisfy (log 16s)d ≥ 0.01

√
n, or s ≥ 1

16(0.1n)1/2d. So MAJORITY requires either
deep or large circuits.

To prove Theorem 10 we need another fact about polynomials:

Claim 11. If n is odd then every function f : {0, 1}n → {0, 1} has a (unique) representation as
f(x) = q(x) ·MAJORITY (x) + r(x), where p and q are polynomials of degree at most (n− 1)/2.

Proof of Theorem 10. Suppose MAJORITY can be approximated by some polynomial p of degree
0.01
√
N with error 1/16. Then MAJORITY (x) = p(x) + e(x), where Pr[e(x) = 1] ≤ ε. Plugging

into Claim 11 we get that every f can be written as

f(x) = q(x)(p(x) + e(x)) + r(x) = (q(x)p(x) + r(x)) + e(x). (3)

The first part is a polynomial of degree (n−1)/2+0.01
√
n. To specify such a polynomial it is enough

to list all of its coefficients. The number of coefficients equals the number of {0, 1} strings with at
most (n − 1)/2 + 0.01

√
n ones, which is less than 0.6 · 2n.2 So the number of polynomials of this

degree is at most 20.6·2n . e(x) is a function with at most 1
16 · 2

n ones; the number of such functions

is
∑

i≤2n/16

(
2n

i

)
≤ 2H(1/16)·2n ≤ 20.34·2n .3 In total, the right-hand side of (3) can be specified in at

most 20.6·2n · 20.34·2n < 22n ways. This is not enough to represent all 22n functions.
2For large n this follows from the Central Limit Theorem; it can also be derived directly from Stirling’s formula.
3H(p) = −p log p− (1− p) log(1− p) is binary entropy. See for example Theorem 1 here.

8

http://people.seas.harvard.edu/~madhusudan/courses/Spring2016/scribe/lect05.pdf

References

The switching lemma was proved by H̊astad. The proof presented here is due to Razborov. A weaker
variant of the lemma was previously discovered by Furst, Saxe, and Sipser, who applied it to prove
circuit lower bounds for the PARITY function. Intermediate improvements and other applications
were given by Yao and Ajtai. The proof that MAJORITY requires large AND/OR/PARITY
circuits was discovered by Razborov and improved by Smolensky.

9

	The switching lemma
	Proof of the switching lemma
	Small depth circuits
	Circuits with parity gates

