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In an optimization problem we seek to find a solution that is the best according to some metric.
Many NP search problems have natural optimization variants, for example:

• MAX-MATCH: Given a graph G find a matching of maximum size (with the largest possible
number of edges)

• MAX-3SAT: Given a formula φ, find an assignment that satisfies as many clauses as possible.

• MAX-CLIQUE: Given a graph G find the largest clique in it.

• MAX-LIN: Given a system of linear equations modulo 2 find a solution that satisfies as many
equations as possible.

How hard are these problems? It turns out that MAX-MATCH can be solved efficiently using
Edmonds’ algorithm from the 1950s. MAX-3SAT, on the other hand, couldn’t be solvable efficiently
unless P = NP because solving it would allow us to in particular tell if a CNF is satisfiable. MAX-
CLIQUE is NP-hard for the same reason. From these examples it looks like optimization problems
are as hard or easy as their decision counterparts.

Now think about MAX-LIN. Systems of linear equations can be solved efficiently by Gaussian
elimination so its decision variant LIN (given a system decide if it has a solution) is in P. However
the system might be unsatisfiable (it might have equations that are inconsistent) and it is unclear
that Gaussian elimination can find a good solution in that case.

Sometimes finding the best possible solution is not needed; one that is good enough will do. For
the MAX-LIN problem, a random solution will satisfy half the equations. Is it possible to do any
better?

Complexity theory is about not getting what you want, and to give a negative answer to this type
of question it is more natural to talk about a related partial decision or search problem. Recall
that a promise problem is specified by a pair of disjoint subsets Y ES,NO ⊆ {0, 1}∗, not necessarily
partitioning {0, 1}∗. An algorithm solves the problem if it answers yes and no on the YES and NO
instances, respectively; there is no correctness requirement for the remaining ones.

Any candidate solution of a maximization problem has a value: the number of edges in the matching,
the number of clauses satisfied by the assignment, and so on. It is common to normalize this value
so it is a number between 0 and 1 (for matchings the normalization is the half the number of
vertices, for formulas it is the number of clauses, and so on.) In the (c, s)-gapped version of the
problem, where c ≥ s, the Y ES instances are those that have a solution of value at least c, and
the NO instances are those in which every solution has value less than s.

An approximate optimization algorithm is one that given an instance that has a solution of value at
least c outputs one of potentially smaller value. If this value is guaranteed to be at least s then in
particular the algorithm solves the (c, s)-gapped version of the problem. Thus (α, α)-GAP-MATCH
is solvable in polynomial time for every δ, as is, say, (2/3, 1/2)-GAP-LIN. On the flip side, to argue
that no good approximation algorithm exists for a given problem f , it is enough to show that
(c, s)-GAP-f is hard. The key to this is an alternative characterization of the class NP, which we
discuss next.
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1 Probabilistically checkable proofs

Recall that NP consists of those problems whose solutions can be efficiently described and verified.
For this lecture it is helpful to think of NP from the perspective of the verification procedure, i.e.,
the verifier V . For a fixed input x, the verifier receives a candidate witness or proof π and has to
check that π is valid.

For instance, the verifier for 3SAT interprets the input π (with n variables and m clauses) as a
candidate satisfying assignment for φ in {0, 1}n and checks that each clause Ci(xa, xb, xc), 1 ≤
i ≤ m of π is satisfied by looking at the corresponding three values πa, πb, πc and checking that
Ci(πa, πb, πc) is true.

Consider now a lazy implementation of the verifier V that, instead of looking at all clauses, only
checks Ci(πa, πb, πc) is true for a single random clause i. If π is a satisfying assignment, this verifier
accepts with probability 1. If φ is unsatisfiable, however, then no matter what π is there is at least
a 1 in m chance that the lazy verifier will detect this:

if x ∈ SAT, then for some π, V (x, π) = 1 with probability 1

if x 6∈ SAT, then for all π, V (x, π) = 1 with probability at most 1− 1/m.

On the negative side, this verifier has a very high chance of being fooled (when m is large). On the
positive side, V is extremely efficient: It only needs to look at three bits of the proof π and verify
that the corresponding constraint is satisfied.

To summarize, there are two ways to verify a solution to 3SAT: One in which the verification is
completely sound (the verifier never fails) but requires looking at the whole proof, and another one
in which the verifier looks at only three bits of the proof but is rarely sound. Is it possible to get
the best of both worlds – a trustworthy verifier that queries a small number of bits in the proof?

To formulate this question, we need to augment the power of an NP verifier with two abilities:
Randomness and query (oracle) access to the candidate proof. We can view the verifier for a given
input x as a randomized oracle circuit that, given oracle access to a candidate proof π, decides if
the proof is convincing or not.

Definition 1. A decision problem (YES ,NO) has a probabilistically checkable proof (PCP) if for
every instance x there exists a randomized oracle circuit Vx computable in time polynomial in x
that, when given non-adaptive oracle access to a candidate proof π ∈ {0, 1}∗,

If x ∈ YES , then V π
x accepts with probability 1 for some π,

If x ∈ NO , then V π
x accepts with probability at most 1/2 for all π.

By non-adaptive we mean that the verifier V makes all its queries into π at once; that is, for every
q, the location of the qth query cannot depend on the answer to the previous queries. The following
two quantities are particularly relevant in this context:

• Randomness complexity: The number of random bits (i.e., the portion of the randomness
tape) the verifier uses on an input of length n

• Query complexity: The maximum number of locations in the proof the verifier queries on
an input of length n (for any setting of the randomness tape)

There is no restriction of the length of π. This is because the length is implicitly determined by
the randomness complexity and query complexity. Over all possible choices of the randomness, the
verifier can access at most q(n) · 2r(n) bits in π, so this is the effective length of π.
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The most useful setting of parameters is to set the randomness complexity r(n) to O(log n) and
the query complexity q(n) to a constant. The class of decision problems that have such proofs is
called PCP. In this setting, the effective length of the proof becomes polynomial in the length of
the input, and a randomized verifier can be simulated by a determnistic one that tries all possible
choices of the randomness, and accepts iff all of them yield accepting computations. The new
verifier works just like a regular NP verifier, thus PCP is contained in NP.

What about the opposite direction? Let’s look at an example, say SAT. A PCP for SAT would be
a procedure that, on input φ, gets oracle access to a purported (polynomial-length) proof that φ is
satisfiable, gets to examine this proof at a constant number of places, and based on this has to say
whether φ is satisfiable or not. We expect it to be correct most of the time. Can this be possible?

Theorem 2 (The PCP Theorem). NP is contained in PCP.

What this says is that any standard NP proof can be rewritten as a PCP. Formally verifying a
mathematical proof is an NP problem: The verifier simply checks that every step is consistent with
the rules of logic. If we write this proof in a special PCP form, it is possible to verify its authenticity
with confidence, say, 50% just by looking at a constant number of bits inside the proof. Even this
constant is very reasonable: examining 4 locations suffices. If we want to have confidence say 99%
we just repeat the random verification process 7 times.

2 Hardness of approximation

Probabilistically checkable proofs for NP are closely related to approximation algorithms for op-
timization problems. For example, consider the problem (1, 1 − ε)-GAP-3SAT about finding an
assignment that satisfies a (1− ε)-fraction of the clauses in a satisfiable formula:

Input: A boolean formula φ.
Yes instances: φ is satisfiable.
No instances: Every assignment satisfies fewer than a (1− ε)-fraction of all the clauses in φ.

A random assignment will satisfy a 7/8-fraction of the clauses assuming each contains exactly three
distinct literals. Even if there are clauses with fewer literals there is a more complicated efficient
algorithm with the same approximation guarantee. Is it possible to do better?

Theorem 3. For ε < 1/8there is a polynomial-time reduction from SAT to (1, 1− ε)-GAP-3SAT.

Therefore finding an approximate assignment for 3SAT that satisfies 87.6% of the clauses is as hard
as finding one that satisfies all the clauses of a satisifable formula in the worst case.

Proving Theorem 3 requires several tools which we won’t have time to cover. However, if you don’t
mind a suboptimal value of ε, we will derive Theorem 3 from the PCP theorem.

2.1 Constrant satisfaction problems

To explain the connection between probabilistically checkable proofs and hardness of approximation,
it will be convenient to work with a generalization of qSAT (qCNF satisfiability) called qCSP, for
“q-ary constraint satisfaction problem.” Let x1, . . . , xn be variables taking values in {0, 1}. A q-ary
constraint satisfaction problem (over alphabet {0, 1}) is a collection of constraints φi : {0, 1}q →
{0, 1}, each of which is associated with a sequence of q variables xi1 , . . . , xiq . So qSAT is a special
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case of qCSP where all the constraints are disjunctions of literals; in a qCSP, any constraint in q
variables is allowed. The problem of inverting the candidate one-way function from Lecture 8 is
another example of a constraint satisfaction problem.

The following promise problem GAP-qCSP captures the hardness of finding approximate solutions
to q-ary constraint satisfaction problems:

Input: A q-ary constraint satisfaction problem Ψ.
Yes instances: Some assignment satisfies all constraints of Ψ.
No instances: Every assignment satisfies at most half of the constraints in Ψ.

We specialize ε to 1/2 for convenience. Here is the relation between PCPs and CSPs:

Claim 4. A decision problem has a PCP with randomness complexity O(log n) and query complexity
q on inputs of size n if and only if it reduces in polynomial time to GAP-qCSP.

This connection follows more or less directly from the definitions, but it plays a crucial role in many
hardness of approximation proofs.

For the forward direction, assume (YES ,NO) has a PCP of randomness complexity O(log n) and
query complexity q. Then a given instance z of the decision problem reduces to a CSP Ψ with
variables x1, . . . , xn taking value in {0, 1}, where xi represents the contents of the ith location
in the proof. For each setting of the randomness r of the verifier there is a constraint ψr whose
variables xr1 , . . . , xrq correspond to those places in the proof queried by the verifier. The constraint
ψ(xr1 , . . . , xrq) takes the value 1 only when the verifier would accept if it would have read the bits

xr1 , . . . , xrq from the proof. There are 2O(logn) = poly(n) such constraints and each of them can
be written down in time polynomial in n: To write down the constraint we run the verifier (with a
fixed setting of the randomness) on all possible values of the proof bits it depends on and see when
it accepts and when it rejects.

If z is a yes instance, then there is some proof π that makes V accept regardless of the randomness.
Then setting xi to the value of the ith element in π will satisfy all the constraints of Ψ. If z is a no
instance, then no matter what π is V rejects at least half the time. Therefore no matter what the
variables xi are set to, at least half of the constraints will not be satisfiable.

For the reverse direction, we are given a polynomial-time reduction from (YES ,NO) to GAP-qCSP.
Now consider the following PCP verifier V : On input z, run the reduction to produce a CSP Ψ over
variables x1, . . . , xn. We view the proof π as the sequence of values for (x1, . . . , xn). The verifier
chooses a random constraint ψ of Ψ, queries the locations of the proof indexed by the variables in
ψ, evaluates ψ on the answers, and accepts iff ψ evaluates to 1. If z is a yes instance then some
assignment satisfies all the constraints of Ψ and the corresponding proof will be accepted with
probability 1. If z is a no instance then no assignment satisfies more than half the constraints of
Ψ, so no matter which proof x∗ V is provided it is bound to reject at least half the time.

2.2 Hardness of approximation for 3SAT

Once we have one problem that is hard to approximate – GAP-qCSP – we can get other ones via
reductions.

For example, to show that (1, 1 − ε)-GAP-3SAT is hard, we can reduce from GAP-qCSP. Given
an instance Ψ of GAP-qCSP, we can transform each of its constraints ψi(xi1 , . . . , xiq) into a 3CNF
formula φi by the CSAT to 3SAT reduction from Lecture 7: φi has variables xi1 , . . . , xiq , yi1, . . . , yis,
s = O(2q), such that (xi1 , . . . , xiq) is a satisfying assignment for ψi if and only if there exists a choice
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of yi1, . . . , yis so that (xi1 , . . . , xiq , yi1, . . . , yis) satisfies φi. The resulting formula has at most 32 ·2q
clauses.

Now consider the 3CNF instance φ obtained by taking a conjunction in all the clauses in all such
formulas φi. Clearly if Ψ has a satisfying assignment, it can be extended to a satisfying assignment
for φ. We now argue that if no assigmnent satisfies more than half the constraints in Ψ, then no
assignment can satisfy more than 1− 1/64 · 2q fraction of the clauses in φ.

We prove the contrapositive. Assume there is an assignment that satisfies a 1 − ε-fraction of
constraints in φ, where ε = 1/64 · 2q. So at most an ε-fraction of the clauses in φ are not satisfied
by this assignment z. Since every formula φi has 32·2q clauses, it follows that at most an 2q ·ε ≤ 1/2
fraction of the formulas φi are not satisfied by the assignment. Now if a formula φi is satisfied by
z, then the corresponding constraint ψi is also satisfied by the x-part of z. So more than half of
the ψi are simultaneously satisfiable, and therefore Ψ is not a “no” instance of GAP-qCSP.

To summarize, we gave a polynomial-time reduction from a qCSP instance Ψ to a 3CNF φ such
that

if Ψ is satisfiable, then φ is satisfiable

if Ψ is ≤ 1/2-satisfiable, then φ is ≤ 1− 1/64 · 2q-satisfiable.

Since q is a constant, so is ε = 1/64 ·2q. By the PCP theorem, we have a polynomial-time reduction
from SAT to (1, 1− ε)-GAP-3SAT, and so (1, 1− ε)-GAP-3SAT is NP-hard.

2.3 Hardness of approximation for clique

We now show that assuming the PCP theorem, it is NP-hard to approximate the size of a maximum
clique in a graph to within any constant factor. We consider the following promise decision problem
(1, δ)-GAP-CLIQUE:

Input: An undirected graph G on n vertices and a number k.
Yes instances: G has a clique of size k.
No instances: G does not have a clique of size δk.

Any potential algorithm that finds a clique of size at least δ times the size of the maximum clique
in G in particular solves (1, δ)-GAP-CLIQUE: To distinguish yes from no instances simply test if
the size of the clique output by the algorithm has size as least δk.

Theorem 5. (1, δ)-GAP-CLIQUE is NP-hard for every constant δ > 0.

We first reduce from (1, 1−ε)-GAP-3SAT to (1, δ)-GAP-CLIQUE for δ = 1−ε and then show how
to make δ arbitrarily small. This is the same reduction from the proof of Theorem 5 in Lecture 5:
This reduction maps satisfiable instances of 3SAT with m clauses into graphs with clique of size
m. In the other direction, any clique of size (1 − ε)m yields partial assignment that satisfies the
corresponding clauses of φ. You will show how to reduce the constant from 1− ε to an arbitrarily
small constant δ in the homework.

3 A weak PCP theorem

We now prove the following weak version of the PCP theorem:
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Theorem 6. Every NP problem has a PCP with randomness complexity polynomial in the input
size and constant query complexity.

This weak PCP theorem is one of the ingredients in the actual proof of the PCP theorem, which
we won’t provide. To prove Theorem 6 we need to design a PCP with the required parameters
for some NP-complete problem. Instead of working with SAT like we usually do, it will be more
convenient to choose another NP-complete problem.

We will start by designing a PCP for LIN (which, as we mentioned, is efficiently solvable). Recall
that instances of LIN are systems of linear equations modulo 2, like

x1 + x2 + x5 = 1

x1 + x3 + x4 + x7 = 0

...

x2 + x7 = 0.

The problem is to decide if this system of equations has a solution or not.

Let’s start with a standard NP proof for LIN. An NP-proof can consist of the values for all the
variables x1, . . . , xn. The verifier then checks that these values satisfy all the equations. To read
this proof, the verifier needs to observe the values of all n variables, so it must make a total of n
queries. The objective is to rewrite the proof in a way that reduces the number of queries to a
constant independent of m and n.

Here is the first idea. A system of m equations over n variables modulo 2 can be written as Ax = b,
where A is an m by n matrix and b is a column vector of length n. (Here the vectors are column
vectors.) Now let r be a random vector of length m. Consider the products rTAx and rTb, which
are scalar values in {0, 1}. If Ax = b, then rTAx = rTb. An easy but important observation is
that if at least one of the equations fails to hold, namely Ax 6= b, then Pr[rTAx = rTb] = 1/2. To
see this, notice that Pr[rTAx = rTb] = Pr[rT(Ax− b) = 0]. If Ax− b is nonzero, then the product
rT(Ax− b) has equal chance of being 0 and 1, so the probability is exactly 1/2.

Once we fix r, the expression rTAx is just some linear combination of the xis; so checking that
rTAx = rTb amounts to verifying that some linear combination of the xis adds to the desired value
rTb. In the worst case, however, this expression may involve all the variables xi, which take n
queries to read, so it seems like we have not made any progress towards verifying the satisfiability
of the LIN system with a constant number of queries.

Now comes the second idea. A classical NP-proof for a LIN instance consists of the values for all
the variables x1, . . . , xn. In the PCP proof, we will ask not only for the values of the variables, but
also for the value of every linear combination of them. This is called the Hadamard encoding of x:
for every a ∈ {0, 1}n, there is a bit in the proof (indexed by the string a) which is supposed to give
the value of the linear combination 〈a, x〉 = a1x1 + · · ·+ anxn. Then, to find out the value rTAx,
it is sufficient to query this proof at the location a = rTA (which is an n bit vector).

So here is the suggested PCP for LIN: On input a LIN system Ax = b, the verifier expects a proof
π ∈ {0, 1}2n , where for every a ∈ {0, 1}n, π(a) is supposed to equal the value 〈a, x〉. The verifier
chooses a random r ∈ {0, 1}m, computes a = rTA and checks that π(a) = rTb.

If the system Ax = b is satisfiable and x is a satisfying assignment, then the proof π where
π(a) = 〈a, x〉 clearly makes the verifier accept with probability 1. Now we want to claim that if the
system is not satisfiable, then the verifier rejects with probability at least 1/2.

We can try to reason along the following lines: If Ax 6= b for every x, then no matter what x is, we
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have that rTAx 6= rTb with probability 1/2. Since π(a) = 〈a, x〉 = rTAx, the verifier rejects with
probability 1/2. However, this reasoning is incomplete. What is the problem?

The issue is that the verifier cannot be sure that π(a) = 〈a, x〉 for every proof location a; the proof
may easily claim, say, that x1 = 0, x2 = 0, but x1 + x2 = 1. If the verifier queries this proof at
x1 + x2, he will not be aware of this inconsistency. So the verifier can be fooled by a proof that
“tells it whatever it wants to hear”, namely always give a value π(rTA) that equals rTb.

To take care of this issue, the verifier wants to “force” the proof to be of a particular form: Namely,
he wants to be sure that for every a, π(a) = 〈a, x〉 for some assignment x. But by our proof of
Claim 1 in Lecture 8, to check this condition the verifier needs to query a constant fraction of the
whole proof. Our aim is to have the verifier issue a constant number of queries.

What the verifier will be able to do instead is ensure that with high probability, π(a) = 〈a, x〉 for
most (say 90%) values of a. Once this is established, it turns out that the verifier can recover the
other (10%) of the values, and thus have (with high probability) virtual access to a correct proof
of the form π(a) = 〈a, x〉.

3.1 The linearity test

Let us reformulate the problem we have to deal with: Given access to a proof π, which we think
of as a string of length 2n, we want to guarantee (with high probability) that π is of the form
π(a) = 〈a, x〉 for some x while making only a constant number of (random) queries into π.

To do this it will be useful to think of π not as a proof but as a function of a: This is a function
f that maps {0, 1}n to {0, 1}. We want to check that f is of the form f(a) = 〈a, x〉 for some x;
in other words, f should be a linear function over F2, the field of two elements. In this language,
we just argued that a verifier of constant query complexity cannot tell apart linear functions from
non-linear functions. What the verifier will be able to do, however, is detect if the function is “far”
from linear.

Definition 7. A function f : {0, 1}n → {0, 1} is δ-close to linear if Prx∼{0,1}n [f(x) 6= 〈a, x〉] ≤ δ
for some a ∈ {0, 1}n. f is δ-far from linear if it is not δ-close to linear.

In the (1, 1− δ)-GAP-LIN promise problem, the Y ES instances are linear functions and the NO-
instances are functions that are δ-far from linear.

Theorem 8. For δ < 1/2, the one-sided (1 − δ)-error randomized query complexity of (1, 1 − δ)-
GAP-LIN is 3.

By one-sided we mean that the algorithm functions that are linear with probability 1. The
idea behind this “linearity test” is the following dual characterization of linearity. A function
f : {0, 1}n → {0, 1} is linear if and only if

f(x) + f(y) = f(x+ y)

for every pair x, y ∈ {0, 1}n. The linearity checks that this relation is satisfied for a random pair
x, y.

The linearity test: On input 1n, choose x, y ∈ {0, 1}n independently at random, query the oracle
at locations x, y and x+ y and accept iff f(x) + f(y) = f(x+ y).

Clearly, if f is linear, the test accepts with probability 1. We need to show that if f is δ-far from
linear, then the test rejects with probability at least δ. We will prove the contrapositive, namely

7



Claim 9. If Pr[f(x) + f(y) = f(x+ y)] ≥ 1− δ then f is δ-close to a linear function.

Proof. Writing F (x) = (−1)f(x), f(x) + f(y) = f(x+ y) means F (x)F (y)F (x+ y) = 1 and

Ex,y∼{0,1}n [F (x)F (y)F (x+y)] = Pr[F (x)F (y)F (x+y) = 1]−Pr[F (x)F (y)F (x+y) = −1] = 1−2δ.

Fourier analysis is often helpful with expressions that look like the one on the left. Let’s see what
we get:

E[F (x)F (y)F (x+ y)] = Ex,y∼{0,1}n
( ∑
a∈{0,1}n

F̂aχa(x)
)( ∑

b∈{0,1}n
F̂bχb(y)

)( ∑
c∈{0,1}n

F̂cχc(x+ y)
)

= Ex,y∼{0,1}n
∑

a,b,c∈{0,1}n
F̂aF̂bF̂cχa(x)χb(y)χc(x+ y)

=
∑

a,b,c∈{0,1}n
F̂aF̂bF̂c · Ex,y∼{0,1}n [χa(x)χb(y)χc(x+ y)].

Recalling that χa(x) = (−1)〈a,x〉, we can write

Ex,y∼{0,1}n [χa(x)χb(y)χc(x+y)] = Ex,y∼{0,1}n [χa+c(x)χb+c(y)] = Ex∼{0,1}n [χa+c(x)] Ey∼{0,1}n [χb+c(y)].

This expression equals zero unless a = c and b = c, and so

E[F (x)F (y)F (x+ y)] =
∑

a,b,c∈{0,1}n :
a = c and b = c

F̂aF̂bF̂c =
∑

a∈{0,1}n
F̂ 3
a .

Since
∑
F̂ 3
a ≤ (max F̂a)

∑
F̂ 2
a = max F̂a, there must exist a ∈ Fn such that F̂a ≥ 1 − 2δ. But

F̂a = E[F (x)χa(x)] = Pr[F (x) = χa(x)]− Pr[F (x) 6= χa(x)], so Pr[F (x) = χa(x)] ≥ 1− δ.

3.2 A PCP for LIN

We are now almost ready to describe the PCP for LIN. Let’s recall what we did so far: Given a
system of equations Ax = b, we expect a PCP proof of the form π(a) = 〈a, x〉 for all a ∈ {0, 1}n.
The linearity test (repeated a constant number of times) allows us to verify, with probability at
least say 9/10, that π is 1/10-close to a proof of this form. If we could tell that π was exactly
of this form, then we can finish by choosing a random linear combination r of the equations in
the system, query the proof at location rTA, and accept iff the queried value equals rTb. By our
previous reasoning, if π encodes a satisfying assignment for the system then the verifier accepts
with probability 1 and if it doesn’t, it accepts with probability 1/2.

There is one problem left to resolve: The linearity test does not allow us to conclude that π is
exactly linear, but merely that it is δ-close to linear for a small constant δ of our choice.

However, it turns out that once we know that π is 1/20-close to a linear function `, we can simulate
a query into ` by making two queries into π. The idea is simple: To find the value of `(y),
we choose a random u and output π(y + u) + π(u). Since both y + u and u are random, with
probability 1 − 2/10 = 4/5 we will have π(y + u) = `(y + u) and π(u) = `(u), and therefore
π(y + u) + π(u) = `(y + u) + `(u) = `(y). This procedure which extracts the value of `(y) out of
π (which is a faulty version of `) is called local correction, as it allows us to correct the faults in y
locally (i.e. with very few queries).

We can now give the full PCP for LIN: On input Ax+ b and given oracle access to a proof π, first
run the linearity test a constant number of times to ensure that with probability at least 9/10, π is
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1/20-close to a linear function `. Then choose a random r and compute the value a = rTA. Now to
find `(a), choose a random u and query π at locations a+u and u. Accept iff π(a+u)+π(u) = rTb.

If Ax = b has a solution, then the proof π(a) = 〈a, x〉 will pass the linearity test with probability
1, and π(a+ u) + π(u) = 〈a, x〉 with probability 1. Since 〈a, x〉 = rTAx = rTb, the verifier accepts
with probability one.

If Ax = b does not have a solution, let `(a) = 〈a, x〉 be the closest linear function to the proof
π provided to the verifier. By the analysis of the linearity test, with probability 9/10, π and `
are 1/10-close. Assume this is the case. Then rTAx 6= rTb with probability 1/2. On the other
hand, `(a) = π(a+ u) + π(u) with probability at least 4/5. All these events hold with probability
1− 1/10− 1/2− 1/5 ≥ 1/10; if this is the case, then

π(a+ u) + π(u) = `(a) = 〈a, x〉 = rTAx 6= rTb

so the verifier rejects with probability at least 1/10.

To summarize, if Ax = b is satisfiable, there exists π which makes the verifier accept with probability
1, and if not, then every π makes the verifier reject with probability at least 1/10. We can repeat
the PCP a constant number of times to increase the rejection probability to 1/2.

3.3 A PCP for all problems in NP

We now generalize the PCP for LIN into one that works for all of NP. To do so we need an
NP-complete problem which looks like LIN. This problem is called QE (for quadratic equations
modulo 2). An instance of QE is a system of homogeneous quadratic equations modulo 2 like

x1x3 + x2x2 + x5x7 = 1

x1x1 + x1x3 + x4x4 + x2x7 = 0

...

x2x2 + x3x3 = 0.

You can show that this problem is NP-complete by reduction from CSAT, in much the same way
we proved that SAT is NP-complete.

Now QE looks a lot like LIN, except that the equations are quadratic. Each of these quadratic
equations can be viewed as a linear equation over the n2 variables yij = xixj . The PCP for LIN
proves that this system has a solution yij . It remains to verify that the solution is indeed of the
form xixj . (For example the solution y11 = y22 = 0, y12 = y21 = 1 is not of this form.)

To do so, we augment the proof π, which represents the Hadamard encoding of y with another part
ρ which gives the Hadamard encoding of x. Namely, for yes instances, the proof (π, rho) will be

π(a) =
n∑

i,j=1

aijyij , where yij = xixj

ρ(b) =

n∑
i=1

bixi.

Given access to such a ρ, the verifier can check that it is, say, 1/100-close to linear. Once it knows
that both π and ρ are close to linear, it can treat them both as linear by using local decoding, so
let’s assume that they are both linear. It remains to check that they are consistent.
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If π and ρ are indeed consistent, then it must be the case that for every b, c ∈ {0, 1}n:

π(b1c1, b1c2, . . . , bncn) = ρ(b1, . . . , bn)ρ(c1, . . . , cn) (1)

which suggests the following consistency test: Choose b, c at random from {0, 1}n and check that
(1) is satisfied.

Clearly if ρ and π are consistent linear functions this test will accept with probability 1. We now
argue that if ρ and π are linear but inconsistent then the test will reject with probability at least
1/4. Any two linear functions ρ and π have the form

ρ(b1, . . . , bn) = b1x1 + · · ·+ bnxn

π(a11, . . . , ann) = a11y11 + a12y12 + · · ·+ annynn

for some x ∈ {0, 1}n, y ∈ {0, 1}n2
. Now suppose that yij 6= xixj for at least one pair (i, j). Then

we claim that with probability at least 1/4,

ρ(b1, . . . , bn)ρ(c1, . . . , cn) 6= π(b1c1, b1c2, . . . , bncn).

To see this, we evaluate both sides:

ρ(b1, . . . , bn)ρ(c1, . . . , cn) =

n∑
i,j=1

bicjxixj

π(b1c1, . . . , bncn) =
n∑

i,j=1

bicjyij .

Let’s think of the difference of the two: For fixed x and y, this is a quadratic polynomial in the
variables bi and cj . Our assumption is that at least one of the terms xixj and yij are different, so
this polynomial is not identically zero. But when we evaluate a non-zero quadratic polynomial over
F2 at a random input, the probability that it vanishes is at most 1/4. This follows from a more
general form of the DeMillo-Lipton-Schwarz-Zippel Theorem from Lecture 7: Write the quadratic
polynomial as

n∑
i=1

bi · (some linear function of c1, . . . , cn).

Since the polynomial is non-zero, at least one of these linear functions is non-zero, so with prob-
ability 1/2 it won’t vanish after c1, . . . , cn are replaced by random values. After this replacement
is done, we just get a non-zero linear function in b1, . . . , bn, so with another 1/2 probability this
won’t vanish after b1, . . . , bn are replaced by random values.

To summarize, we have the following PCP for QE. The proof is of the form (π, ρ), where π has
length 2n

2
and ρ has length 2n. We expect ρ and π to encode some satisfying assignment x to the

system of equations. To check this is the case, we run the following tests say 10 times:

1. Linearity test: Run the linearity test a constant number of times on π and ρ. This ensures
that with probability 99%, both π and ρ are 1%-close to linear functions.

2. Consistency test: Choose random b, c ∈ {0, 1}n and check that

ρ̃(b1, . . . , bn)ρ̃(c1, . . . , cn) = π̃(b1c1, b1c2, . . . , bncn)

where ρ̃(b) = ρ(b+ u) + ρ(u) for a random u, and similarly for π̃.
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3. Satisfiability test: Choose random r ∈ {0, 1}m. Take a linear combination of the equations
as indexed by r and let a denote the vector of coefficients. Accept if π̃(a) = rTb.

If the QE instance is satisfiable, then π and ρ that encode a satisfying assignment make the verifier
accept with probability 1. If not, then no matter what π and ρ are, the verifier rejects with constant
probability by an extension of the analysis we did for LIN.
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