
CSC 5170: Theory of Computational Complexity Lecture 11
The Chinese University of Hong Kong 29 March 2010

Today we talk about interactive proofs. Usually we think of proofs as immutable objects: A proof
is something you read in a book, think about, and decide if it is correct or not. But suppose you are
suspected of a murder and want to prove your innocence in court. Instead of submitting a written
proof of your story, you are subjected to a cross-examination of lawyers at the end of which a jury
will decide if you are innocent or guilty. How should you go about preparing your case?

1 Interactive proofs

To explain interactive proofs, let’s go back to our definition of NP. A decision problem L is in NP
if there is a polynomial-time verifier V and a polynomial p such that

if x ∈ L, then there is a y, |y| ≤ p(|x|) such that V (x, y) = 1, and
if x 6∈ L, then for all y, |y| ≤ p(|x|), V (x, y) = 0.

So far we have been thinking of y as a witness or certificate for L: This is the satisfying assignment
for a boolean formula, or the perfect matching in a graph. Today we think of it a bit differently:
Instead of thinking of the witness as something intrinsic to the problem, we think of it as being
furnished by an external entity, a prover. So we can think of NP verification as the following kind
of process: On input x, the verifier V asks to see a proof that x ∈ L. The prover tries to provide
such a proof. If the prover is honest, it will always provide a witness y when x ∈ L. However, the
prover may try to cheat by providing a bogus proof when x 6∈ L: For instance, given a CNF φ, it
can try to give an assignment a such that φ(a) is false. The job of the verifier is to look at the
prover’s claimed proof and decide if x ∈ L or not.

Formally, an NP-prover P is any (computationally unbounded) function that maps inputs x ∈
{0, 1}∗ to proofs y ∈ {0, 1}∗. Then NP is the class of all decision problems L for which there exists
a TM V (called a verifier) whose running time is polynomial in the length of x and a computationally
unbounded TM P : {0, 1}∗ → {0, 1}∗ (called the honest prover) such that

if x ∈ L, then V (x, P (x)) = 1
if x 6∈ L, then for all TM P ∗, V (x, P ∗(x)) = 0.

Now consider the following extension of NP-proofs: After receiving the purported proof, the verifier
is not quite convinced that the prover is correct and asks to see more detail. The prover may then
send a new message to the verifier elaborating on his case. The two keep going back and forth
until at the end of the day, the verifier is either convinced that the proof is correct (and accepts),
or thinks the whole argument is bogus (and rejects).

Notice that in this setting the prover and verifier are adaptive: The question that the verifier asks
at any given round of interaction may depend on the answers it received from the prover in previous

1

2

x

V P

ACC/REJ

y

x

V P

q1
a1
q2
a2

ACC/REJ

Figure 1: Introducing interaction in proofs

rounds. However, the prover himself may choose to adapt his answers based on the previous queries
made by the verifier.

To formalize it we need to introduce interactive Turing Machines. This is a Turing Machine that,
in addition to its input x, receives additional inputs (y1, z1, . . . , yk, zk) which represent the messages
sent and received in the first 2k rounds of interaction. Here, y1, . . . , yk are the messages sent by
the machine itself, and z1, . . . , zk are the responses received from the other party. On this input,
the machine produces the next message yk+1 or possibly accepts/rejects.

Given two interactive Turing Machines A and B we define the interactive computation of (A,B)
in the natural way: On input x, A(x) outputs y1, B(x, y1) outputs z1, A(x, y1, z1) outputs y2, and
so on, until A accepts or rejects.

A (polynomial-time) deterministic interactive proof for a decision problem L is a pair of Turing
Machines (V, P) where V runs in time polynomial in the input x, and

if x ∈ L, then (V, P)(x) accepts
if x 6∈ L, then for all TM P ∗, (V, P ∗)(x) rejects.

The verifier’s messages are called questions, and the prover’s messages are called answers.

Clearly the model we just introduced is at least as powerful as NP, which requires no interaction.
But is it really any more powerful? A simple argument shows that it is not, at least in the case
when V is deterministic. The reason is that on input x, the prover can predict in advance which
questions the verifier is going to ask, so it can answer all of them in the first round. Therefore the
whole interaction can be emulated by a one-round interaction, and the decision problem in question
is in NP. (See Figure 2.)

x

V P

ACC/REJ

τ = (a1, a2, . . . , aw)

V

Figure 2: Deterministic verifiers are just like NP

3

2 Interaction and randomness

Now let’s supposed that the verifier is randomized. In this case, it is no more the case that the
prover can predict the verifier’s questions. It turns out that this model is a lot more interesting.

Definition 1. A (polynomial-time) interactive proof for a decision problem L is a pair of Turing
Machines (V, P) where V is a randomized TM that runs in time polynomial in the input x, and

if x ∈ L, Pr[then for all TM P ∗, (V, P ∗)(x) accepts] ≥ 2/3
if x 6∈ L, Pr[then for all TM P ∗, (V, P ∗)(x) accepts] ≤ 1/3.

An r-round interactive proof is one in which the prover and verifier exchange at most r messages
on any input and any setting of the randomness.

As usual there is nothing special about the constants 2/3 and 1/3, by the same argument we had
for BPP. However there is one subtlety: Repeating the protocol several times may increase the
number of rounds. It turns out that what we can do instead is repeat the protocol in parallel, and
amplify the gap in probabilities without affecting the number of rounds.

x

V P
q1(x, r)

τ
q2(x, r, τ)

ACC/REJ

r

Figure 3: An interactive proof

We now give an example of a problem that has a two-round interactive proof, but is not known
to be in NP. Two graphs G1 and G2 on n vertices are isomorphic if there is a permutation of the
vertices of G1 so that, after permuting them, they both look the same. Formally, the permutation
π has the property that (u, v) is an edge of G1 if and only if (π(u), π(v)) is an edge of G2. Look at
the following question:

GI (graph isomorphism): Given a pair of graphs (G1, G2), are they isomorphic?

There are some obvious tests you can try for isomorphism, for instance checking that they have the
same number of edges and the same degree sequence (i.e. they have the same number of vertices of
any given degree). However it should be easy to convince yourself that two graphs can pass these
tests and still not be isomorphic. There are more sophisticated tests like checking that G1 and G2

have the same eigenvalues. Yet it turns out that they can still be non-isomorphic.

On the other hand, GI is clearly in NP – the isomorphism permutation can serve as a witness. But
what about the opposite problem:

GI (graph nonisomorphism): Given a pair of graphs (G1, G2), are they non-isomorphic?

4

While GI is not known to be in NP, there is a simple two-round interactive protocol for it:

Interactive proof for graph non-isomorphism

On input (G1, G2):

V: Choose a random i ∈ {1, 2} and a random permutation π on n elements. Create a
graph G by applying π to the vertices of Gi and permuting its edges accordingly
(i.e., (π(u), π(v)) is an edge in G iff (u, v) is an edge in Gi). Send G to the prover.

P: Answer 1 if G is isomorphic to G1 and 2 if G is isomorphic to G2.

V: If the prover answered i accept, otherwise reject.

We now argue that the above is indeed an interactive proof for GI. If G1 and G2 are not isomorphic,
then G is isomorphic to Gi, so it cannot be isomorphic to the other graph. So the honest prover will
always answer i, and the verifier will always accept. Now assume G1 and G2 are not isomorphic.
We have to argue that no matter what the prover P ∗ answers, V will reject with probability at least
1/2. The key insight is that when G1 and G2 are isomorphic, the random graph G is (statistically)
independent of the random value i. Therefore no matter what the prover does, the chances that
he guesses the correct value of i is exactly 1/2.

3 Round reduction and public-coin proofs

So we seem to be getting evidence that interaction helps us prove more things. At this point the
situation looks a bit like what we had for the polynomial-time hierarchy: We have an example
of a problem (graph non-isomorphism) that has a 2-round interactive proof, but no known non-
interactive proof.

It seems reasonable to think that if two rounds of interaction are more powerful than no interaction,
then three rounds should be even more powerful than two rounds. However, it turns out that this
is not the case:

Theorem 2. For every (constant) r, if L has an r-round interactive proof, then it has a 2-round
interactive proof.

To prove this theorem, it turns out it is convenient to first convert the interactive proof in a special
form. To explain what this special form is, let’s look back at our example of graph non-isomorphism.
The reason the verifier is convinced that G1 and G2 are not isomorphic after running this protocol
is that the if they were isomorphic, then the value i chosen by the verifier at the very beginning is
completely hidden from the prover. This is an example of a private coin protocol: The soundness
of the protocol hinges on the fact that the verifier has some private (random) value that the prover
cannot guess.

We can also consider a more restricted kind of protocol, where everything the verifier does is in
plain view of the prover. Without loss of generality, this kind of protocol, called a public coin
protocol, works in the following way: The prover and the verifier get together in a room and toss

5

some random coins together. The coin tosses serve as the verifier’s first question. The prover then
answers this question, and they get together again, toss some coins, and this is the second question.
After sufficiently many rounds of interaction the verifier has to accept or reject.

This seems like a very strange thing to do – how much can the verifier learn by asking random
questions? But here is an example of an interesting promise problem that can has a two-round
public-coin proof:

Input: A circuit C : {0, 1}n → {0, 1} and a number 0 ≤ s ≤ 2n.
Yes instances: (C, s) such that C has at least s satisfying assignments.
No instances: (C, s) such that C has at most s/8 satisfying assignments.

This problem has a very simple protocol: In the first round, the prover and verifier choose a random
hash function h : {0, 1}n → {0, 1}i, where 2i−1 ≤ s ≤ 2i−2. The prover is then supposed to send x
such that C accepts x and h(x) = 0. If such an x is sent, the verifier accepts, otherwise it rejects.
By the analysis we did in the last lecture, for a yes instance such an x exists with probability at
least 1/8, and for a no instance no x exists with probability 1/16.

While this protocol seems quite specialized, it turns out that the idea can be used to turn any
private-coin protocol into a public-coin one. We won’t show how to do this but here is the general
result.

Theorem 3. If L has an r-round interactive proof, then it has an r+3 round public-coin interactive
proof.

Now we sketch how to turn an r-round public-coin interactive proof for any constant r > 2 into a
two-round public-coin proof. We will do it iteratively, reducing the number of rounds one by one.
In such a protocol, the verifer starts by asking a random question r1, then the prover answers by
r1 and the verifier responds with r2. We will sketch how to flip the order of the second and third
round of interaction without affecting the completeness and soundness of the protocol. The result
is a protocol with one less round.

Let’s assume that each message is k bits long, where k grows at a rate polynomial in the input size.

x

V P

ACC/REJ

r

r1

a1

r2
a2

→

x

V P

ACC/REJ

r

r1

a1

r
(1)
2 r

(1)
2 r

(1)
2

a
(1)
2 a

(1)
2 a

(1)
2

Figure 4: Reversing a pair of question and answer to reduce the number of rounds

Consider what happens if in the third round of the protocol, the verifier “forks” m independent
executions of it in parallel (we’ll give the value of m later): Namely, instead of asking a single
question r2, it asks m such questions r21, . . . , r2m independently at random. It then expects m

6

answers a21, . . . , a2m from the prover, and so forth. At the end, it computes m different answers,
and accepts if the majority of them are accepting.

To analyze what happens it helps to assume the probability of accepting for the yes instances is
at least 8/9 and the probability of rejecting the no instances is at most 1/9. Let’s look at the
yes instances first. It then follows that for at least a 2/3 fraction choices of the first message r1,
for any fixed response a1 by the prover, the probability that the verifier accepts in the rest of the
interaction is at least 2/3. Let’s fix a message r1 with this property. Then by the Chernoff bound
the probability that fewer than half of the parallel interactions accept is at most 2−m/6.

Now let’s look at the no instances. These accept with probability at most 1/9, so there is at least
a 2/3 fraction of messages r1 such that for any fixed response a1 by the prover, the rest of the
interaction rejects with probability 2/3. Let’s fix a message r1 with this property. Again by the
Chernoff bound the probability that more than half of the forked interactions accept is at most
2−m/6.

In either case, as long as r1 is “good”, we have that for any fixed prover response a1, the probability
that fewer than half of the forked interactions do the right thing is at most 2−m/6. But there are
at most 2k possible responses a1; so by a union bound we get that the probability that there exists
a1 that makes fewer than half of the forked interactions do the right thing is at most 2k−m/6. We
choose m = 6k + 18 to make this probability as small as 1/8.

But now look at what we proved: Regardless of what the prover’s message a1 is, the rest of the
protocol succeeds with probability 7/8. So we can now delay the message a1 to come after the
questions r21, . . . , r2m. (In fact we could make it the very last message of the interaction if we
wanted to.) This allows us to combine the first and second rounds of questions into a single round
(and even the first two rounds of answers into a single round) and reduce the number of rounds by
at least one.

So it turns out that any polynomial-time interactive proof with a constant number of rounds can
be turned into a polynomial-time interactive proof with two rounds and public coins. There is one
last simplification that we can make, giving rise to the following simplified definition:

Definition 4. The class AM consists of those decision problems that admit a two-round interactive
proof (P, V) such that

if x ∈ L, Pr[for all TM P ∗, (V, P ∗)(x) accepts] = 1
if x 6∈ L, Pr[for all TM P ∗, (V, P ∗)(x) accepts] ≤ 1/2.

So any constant-round interactive proof can be “compiled” into this very special form: The verifier
asks a single random question; for a yes instance, the prover can always make the verifier accept,
but for a no instance, the verifier will reject with high probability.

The shorthand AM stands for Arthur-Merlin games. This notation is inspired by the historic
parable in which the fool Merlin asks wise King Arthur completely random questions, yet at the
end Arthur manages to convince Merlin of some deep truth.

7

4 Interactive proofs, derandomization, and the polynomial-time
hierarchy

After all these simplifications it is natural to ask if constant-round interactive proofs are really all
that much more powerful than ordinary (non-interactive) proofs. Just as BPP could be simulated
by polynomial-size circuit families, a look at the definition of AM and an application of the same
argument shows that AM can be simulated by nondeterministic polynomial-size circuit families: A
nondeterministic circuit NC gets two inputs x and y, and we say NC accepts x if there is some
choice of y that makes NC(x, y) = 1.

This looks awfully close to NP. In fact we can do more: Recall that we showed BPP = P using the
Nisan-Wigderson generator, once we were willing to make an assumption that certain circuit lower
bounds hold. In fact it is possible to show that NP = AM under a stronger but still believable
assumption:1

Theorem 5. If there is a problem L decidable in time 2O(n) but not decidable by nondeterministic
circuits of size 2δ(n) for some δ > 0, then AM = NP.

This is quite strange: Think of the example of graph non-isomorphism. We saw this problem is in
AM, but nobody knows if it is in NP. What this theorem tells us is that if we are willing to believe
its assumption, then interaction is not required to prove graph non-isomorphism!

If we are not willing to make any such assumptions, we can still obtain “derandomizations” of AM
within the polynomial-time hierarchy, as well as evidence that interactive proofs and interactive
refutations are different. The situation is pretty similar to the one for BPP, and the results are
proved in much the same way. We summarize the various results of this kind in the following table.

BPP ⊆ P/poly AM ⊆ NP/poly
BPP ⊆ Σ2 ∩Π2 AM ⊆ Π2

NP ⊆ BPP ⇒ Σ2 = Π2 AM ⊆ coAM ⇒ Σ2 = Π2

One consequence of the last relation is that graph isomorphism is unlikely to be NP-complete:
Since graph isomorphism is in coAM, if graph isomorphism were NP-complete, then we would have
NP ⊆ coAM and thefore Σ2 = Π2.

What if we consider interactive proofs with no restriction on the number of rounds? The class
of decision problems for which such proofs exist is denoted by IP. Noam Nisan showed that
P#SAT ⊆ IP, so this kind of interactive proofs appear to be much more powerful.

1In fact a somewhat weaker assumption is sufficient.

