
CSC 5170: Theory of Computational Complexity Lecture 12
The Chinese University of Hong Kong 12 April 2010

Interactive proofs were introduced as a generalization of the classical notion of a proof in the hope
that more things can be proven in an interactive way (for instance, the non-isomorphism of two
graphs). Today we look at a different kind called a probabilistically checkable proof (or holographic
proof), which is seemingly less general than a classical proof. Again, we start from the definition
of NP: A decision problem L is in NP if there is a polynomial-time verifier V and a polynomial p
such that

if x ∈ L, then there is a π, |π| ≤ p(|x|) such that V (x, π) = 1, and
if x 6∈ L, then for all y, |π| ≤ p(|x|), V (x, π) = 0.

Now instead of thinking of π as a witness or certificate for x, we will think of it as a proof. In
interactive proofs, we thought of π as provided by another (computationally unbounded) party
called the prover. Today we will forget about the prover and focus on π (the proof) itself. What
we will focus on is how π is accessed by the verifier V .

1 Probabilistically checkable proofs

In the definition of NP, π is provided on some tape of the Turing Machine, which V reads from
left to right. What happens if instead V has random access to π, that is, V can provide the value
i and observe the ith bit of π? Up to a polynomial factor in the running time, nothing much will
change because random access can be simulated easily by sequential access, and vice versa.

We now make the radical restriction that instead of reading the whole proof π, V only gets to
look at a small portion of π. Say if π is m bits long, we allow V to only look at, say, logm bits
within π. In the case when V is deterministic, this is not terribly interesting: If V gets to see
only logm bits of the proof, then it doesn’t need the proof to begin with, because it can try all
possible sequences of 2O(logm) values in the locations of the proof it is supposed to read and see
if any of those combinations would accept. So a deterministic verifier that has random access to
logm locations inside the proof is no more powerful than a polynomial-time Turing Machine.

Things change substantially when the verifier gets access to randomness! Intuitively, the reason
is the following: Even if for any fixing of the randomness, the verifier gets to see only a constant
number of bits within π, it is entirely plausible that as the randomness changes different parts of
π are exposed, so when considering all choices of the randomness the verifier gets to see the whole
proof. But in any specific run of the verifier, only a tiny portion of the proof is revealed. This is
where the name “holographic proofs” comes from. (Unfortunately for some reason the much drier
“probablilstically checkable proof” is now the standard terminology.)

To model random access to a proof, we view the proof as an oracle. So reading the ith bit from
the proof amounts to querying the oracle for its contents at location i and reading off the answer
from the answer tape. It turns out that the following two quantities are particularly relevant in
this context:

1

2

• Randomness complexity: The number of random bits (i.e., the portion of the randomness
tape) the verifier uses on an input of length n

• Query complexity: The maximum number of locations in the proof the verifier queries on
an input of length n (for any setting of the randomness tape)

We are now equipped to give the definition of a probabilistically checkable proof.

Definition 1. Let L be a decision problem. A probabilistically checkable proof system (PCP) for L
is a polynomial-time randomized non-adaptive oracle Turing Machine V (called the verifier) such
that

If x ∈ L, Pr[there exists π ∈ {0, 1}∗ s.t. V π(x) accepts] = 1,
If x 6∈ L, Pr[there exists π ∈ {0, 1}∗ s.t. V π(x) accepts] ≤ 1/2.

The class PCP(r(n), q(n)) consists of those decision problems that have probabilistically checkable
proofs with verifiers of randomness complexity r(n) and query complexity q(n).

By non-adaptive we mean that the verifier V makes all its queries into π at once; that is, for every
i, the location of the ith query cannot depend on the answer to the previous queries.

Notice that there is no restriction of the length of π; this is because it is implicitly determined by
the randomness complexity and query complexity. Over all possible choices of the randomness, the
verifier can access at most q(n) · 2r(n) bits in π, so this is the effective length of π.

The most useful setting of parameters is to set the randomness complexity r(n) to O(log n) and
the query complexity q(n) to a constant. This gives rise to the class PCP(O(log n), O(1)), which
is called just PCP. In this setting, the effective length of the proof becomes polynomial in the
length of the input, and a randomized verifier can be simulated by a determnistic one that tries all
possible choices of the randomness, and accepts iff all of them yield accepting computations. The
new verifier works just like a regular NP verifier, thus PCP ⊆ NP.

What about the opposite direction? Let’s look at an example, say SAT. A PCP for SAT would be
a procedure that, on input φ, gets oracle access to a purported (polynomial-length) proof that φ is
satisfiable, gets to examine this proof at a constant number of places, and based on this has to say
whether φ is satisfiable or not. We expect it to be correct most of the time. Can this be possible?

One of the most impressive theorems in the theory of computation says exactly that:

Theorem 2 (The PCP Theorem). PCP = NP.

What this says is that any standard NP proof can be rewritten as a holographic proof. Take your
favorite proofs from mathematics. Some of them are hundreds of pages long. If we write this
proof in a special PCP form, it is possible to verify its authenticity with confidence, say, 50% just
by looking at a constant number of symbols inside the proof! In fact even this constant is very
reasonable: examining 4 locations suffices. If we want to have confidence say 99% we just repeat
the random verification process about 7 times.

3

The PCP Theorem was proved in 1993 by Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu
Sudan, and Mario Szegedy, who built upon a breakthrough of Arora and Muli Safra from 1992. In
2005 Irit Dinur came up with a completely different proof.

2 Hardness of approximation

Probabilistically checkable proofs for NP are intimately related to approximation algorithms for
optimization problems in NP. Let’s take 3SAT as an example. Suppose you are given a satisfiable
3CNF φ. Since 3SAT is NP-complete, looking for a satisfying assignment of φ may be asking too
much. But suppose you are willing to settle for less; say you are happy with an assignment that
satisfies a 1− ε fraction of all the clauses. (Think of ε as some fixed constant like 1%. This looks
like an easier task; is there a polynomial-time algorithm for it?

Here is another task which is seemingly even easier. Instead of solving the above approximate search
problem which asks you to find a good assignment, now you are only interested in the following
promise problem:

Promise problem ε-GAP-3SAT
Input: A boolean formula φ.
Yes instances: Some assignment satisfies all clauses of φ.
No instances: Every assignment satisfies fewer than a (1− ε)-fraction of all the clauses in φ.

Clearly if you can find an assignment that satisfies at least 1 − ε fraction of the clauses of every
satisfiable boolean formula, you can also distinguish between the yes-instances and no-instances of
ε-GAP-3SAT. So ε-GAP-3SAT can be no harder than the above problem of approximating SAT.
How hard is it?

Theorem 3 (Johan H̊astad). For every ε < 1/8, ε-GAP-3SAT is NP-hard.

So finding an approximate assignment for 3SAT is as hard as finding an exact assignment! The
constant 1/8 in H̊astad’s theorem is optimal; Uri Zwick showed that 1/8-GAP-3SAT can be solved
in polynomial time.

Proving H̊astad’s theorem requires several tools which we won’t have time to cover. However, if
we are willing to settle for a suboptimal value of ε (i.e., show that approximating 3SAT is hard for
some constant ε), we will see that the statement follows easily (and is in fact equivalent to) the
PCP theorem.

2.1 Constrant satisfaction problems

To explain the connection between probabilistically checkable proofs and hardness of approximation,
it will be convenient to work with a generalization of qSAT (qCNF satisfiability) called qCSP, for
“q-ary constraint satisfaction problem satisfiability”. Let x1, . . . , xn be variables taking values in
{0, 1}. A q-ary constraint satisfaction problem (over alphabet {0, 1}) is a collection of constraints

4

φi : {0, 1}q → {0, 1}, each of which is associated with a sequence of q variables xi1 , . . . , xiq . So
qSAT is a special case of qCSP where all the constraints are disjunctions of literals; in a qCSP, any
constraint in q variables is allowed.

Just like we defined ε-GAP-3SAT, we have the following promise problem which captures the
hardness of approximating q-ary constraint satisfaction problems:

Promise problem GAP-qCSP
Input: A qary constraint satisfaction problem Ψ.
Yes instances: Some assignment satisfies all constraints of Ψ.
No instances: Every assignment satisfies fewer than a 1/2-fraction of all the constraints in Ψ.

Here we specialize ε to 1/2 for convenience. Here is the connection between PCPs and CSPs:

L ∈ PCP(O(log n), q) ⇐⇒ L reduces to GAP-qCSP

This connection follows more or less directly from the definitions, but it plays a crucial role in many
hardness of approximation proofs.

For the forward direction, assume L has a PCP of randomness complexity O(log n) and query
complexity q. Then instance z (of length n) of L reduces to a CSP Ψ with variablesx1, . . . , xn
taking value in {0, 1}, where xi represents the contents of the ith location in the proof. For each
setting of the randomness r of the verifier there is a constraint ψr whose variables xr1 , . . . , xrq
correspond to those places in the proof queried by the verifier. The constraint ψ(xr1 , . . . , xrq) takes
the value 1 only when the verifier would accept if it would have read the bits xr1 , . . . , xrq from the
proof. Notice that there are 2O(logn) = poly(n) such constraints and each of them can be written
down in time polynomial in n: To write down the constraint we run the verifier (with a fixed setting
of the randomness) on all possible values of the proof bits it depends on and see when it accepts
and when it rejects.

If z is a “yes” instance of L, then there is some proof π that makes V accept regardless of the
randomness. Then setting xi to the value of the ith element in π will satisfy all the constraints of
Ψ. If z is a “no” instance of L, then no matter what π is V rejects at least half the time. Therefore
no matter what the variables xi are set to, at least half of the constraints will not be satisfiable.

For the reverse direction, we are given a polynomial-time reduction from L to GAP-qCSP. Now
consider the following PCP verifier V for L: On input z, run the reduction to produce a CSP Ψ over
variables x1, . . . , xn. We view the proof π as the sequence of values for (x1, . . . , xn). The verifier
chooses a random constraint ψ of Ψ, queries the locations of the proof indexed by the variables in
ψ, evaluates ψ on the answers, and accepts iff ψ evaluates to 1. Just as above, it is easy to see that
if z is in L, then some assignment satisfies all the constraints of Ψ and the corresponding proof will
be accepted with probability 1; if z is not in L, then no assignment satisfies more than half the
constraints of Ψ, so no matter which proof V has access to it is bound to reject at least half the
time.

5

2.2 Hardness of approximation for 3SAT

Once we have one problem that is hard to approximate – GAP-qCSP – we can get other ones via
reductions.

For example, to show that ε-GAP-3SAT is hard, we can reduce from GAP-qCSP. Given an instance
Ψ of GAP-qCSP, we can transform each of its constraints ψi(xi1 , . . . , xiq into a 3CNF formula φi in
variables xi1 , . . . , xiq , yi1, . . . , yis, s = O(2q), such that (xi1 , . . . , xiq) is a satisfying assignment for
ψi if and only if there exists a choice of yi1, . . . , yis so that (xi1 , . . . , xiq , yi1, . . . , yis) satisfies φi.

We have already seen how to do this transformation: Since ψi is a function from {0, 1}q to {0, 1},
it can be computed by a circuit of size 4 · 2q. We can transform this circuit into a 3CNF formula
using the method we introduced when reducing CSAT to 3SAT. The resulting formula will have
at most 32 · 2q clauses.

Now consider the 3CNF instance φ obtained by taking a conjunction in all the clauses in all such
formulas φi. Clearly if Ψ has a satisfying assignment, it can be extended to a satisfying assignment
for φ. We now argue that if no assigmnent satisfies more than half the constraints in Ψ, then no
assignment can satisfy more than 1− 1/64 · 2q fraction of the clauses in φ.

We prove this by contradiction. Assume there is an assignment that satisfies a 1 − ε-fraction of
constraints in φ, where ε = 1/64 ·2q. So at most an ε-fraction of the clauses in φ are not satisfied by
this assignment z. Since every formula φi has 32 · 2q clauses, it follows that at most an 2q · ε ≤ 1/2
fraction of the formulas φi are not satisfied by the assignment. Now if a formula φi is satisfied by
z, then the corresponding constraint ψi is also satisfied by the x-part of z. So more than half of
the ψi are simultaneously satisfiable, and therefore Ψ is not a “no” instance of GAP-qCSP.

To summarize, we gave a polynomial-time reduction from a qCSP instance Ψ to a 3CNF phi such
that

if Ψ is satisfiable, then φ is satisfiable
if Ψ is ≤ 1/2-satisfiable, then φ is ≤ 1− 1/64 · 2q-satisfiable.

Since q is a constant, so is ε = 1/64 ·2q. By the PCP theorem, we have a polynomial-time reduction
from SAT to ε-GAP-3SAT, and so the latter one is NP-hard.

2.3 Hardness of approximation for independent set

An independent set in an undirected graph is a collection of vertices such that no pair is connected
by an edge. Calculating the exact set of an independent set in a graph is NP-hard. Now we will
see how it follows from the PCP theorem that the size of the maximum independent set in a graph
is hard to approximate within any constant factor.

To do so we look at the following promise version of independent set: Given two constants 0 < s ≤
c ≤ 1, we define

Promise problem GAP-(c, s)IS
Input: An undirected graph G on n vertices.

6

Yes instances: G has an independent set of size cn.
No instances: G has no independent set of size sn.

Suppose we had an algorithm A that, given a graph G whose maximum independent set has size k,
finds an independent set of size εk for some constant ε > 0. Then GAP-(c, s)IS would be solvable
in polynomial time whenever s < εc: To solve it simply run A and accept if A finds an independent
set of size sn or more. If G has an independent set of size cn, then A is guaranteed to find one of
size εcn > sn, so we will accept. If G has no independent set of size sn, A will never find such a
set, so we will reject.

Theorem 4. For every ε > 0 there exists a c > 0 such that the promise problem GAP-(c, εc)IS is
NP-hard.

We first give the proof in the case ε = 1/2. The proof is by reduction from GAP-qCSP. Given
a GAP-qCSP instance Ψ with m constraints and n variables, we create the following graph G:
The vertices of G will be divided into clusters, and there will be one cluster for each constraint
ψi(xi1 , . . . , xiq) of Ψ. Within each cluster, there will be a vertex for every assignment to xi1 , . . . , xiq
such that ψi(xi1 , . . . , xiq) = 1. Notice that there are m clusters and at most 2q vertices per cluster.

We now describe the edges of G. The vertices of G represent partial assignments to the variables:
The edges will represent inconsistencies among these assignments. Specifically, take two vertices.
Each of these vertices represents an assignment to a subset consisting of q variables. Some of the
variables may be shared. We connect the two vertices if at least one of the shared variables gets a
different value (0 at one vertex, 1 at the other). In particular, all the vertices within a cluster are
connected by a clique.

Suppose Ψ has a satisfying assignment x. Then G must have an independent set of size m: Within
each cluster, choose the vertex that represents an assignment derived from x. (Since x is satisfying
for φi, such a vertex will exist in cluster i). All these assignments are consistent, so the corresponding
vertices form a clique.

Now suppose every assignment of Ψ satisfies at most half the clauses. We will argue that every
independent set in G has size less than m/2. For contradiction, assume G has an independent set
of size at least m/2. The vertices in this independent set must come from at least m/2 different
clusters, each representing a clause. Since the partial assignments representing all these vertices are
consistent, there must be a single assignment x which is consistent with all these partial assignments.
This x will satisfy at least m/2 different clauses.

To summarize, we proved that:

if Ψ is satisfiable, then G has an i.s. of size m
if Ψ is ≤ 1/2-satisfiable, then G has no i.s. of size m/2.

This proves the theorem for ε = 1/2 (set c to be m divided by the total number of vertices).

To handle smaller values of ε, notice that there is nothing special about the soundness constant 1/2
in the PCP theorem. By running the verifier k times independently at random (and accepting iff
all runs accept), we can amplify the soundness constant from 1/2 to 1/2k. We have to pay a price:

7

Both the randomness complexity and the query complexity go up by a factor of k. But as long as
k is constant, this does not change the statement of the theorem. Choose k so that 1/2k = ε. Then
the same argument shows that the theorem is true for this value of ε.

3 A weak PCP theorem

We now prove the following weak version of the PCP theorem:

Theorem 5. NP ⊆ PCP(poly(n), O(1)).

While this theorem does not have as many applications (as the corresponding CSP instance is of
exponential size), it will play a role in the proof of the actual PCP theorem which we will see next
time.

To prove this theorem we need to design a PCP with the required parameters for some NP-complete
problem. Instead of working with SAT like we usually do, it will be more convenient to choose
another NP-complete problem.

But in order to avoid some technical complications, we will start by explaining our ideas using a
simpler problem called LIN. In this problem, the input is a system of linear equations modulo 2,
like

x1 + x2 + x5 = 1
x1 + x3 + x4 + x7 = 0

...
x2 + x7 = 0.

The problem is to decide if this system of equations has a solution or not. In fact LIN is in P, so it
is pointless to design proof systems for it. But let’s forget this for a moment and see how we can
design a PCP for LIN, because the ideas will be useful for proving the weak PCP theorem.

Let’s start with a standard NP proof for LIN. An NP-proof can consist of the values for all the
variables x1, . . . , xn. The verifier then checks that these values satisfy all the equations. To read
this proof, the verifier needs to observe the values of all n variables, so a total of n queries. How is
it possible to do with less?

Here is the first idea. A system of m equations over n variables modulo 2 can be written as Ax = b,
where A is an m by n matrix and b is a column vector of length n. (Here the vectors are column
vectors.) Now let r be a random vector of length m. Consider the products rTAx and rTb, which
are scalar values in {0, 1}. If Ax = b, then rTAx = rTb. An easy but important observation is
that if at least one of the equations fails to hold, namely Ax 6= b, then Pr[rTAx = rTb] = 1/2. To
see this, notice that Pr[rTAx = rTb] = Pr[rT(Ax− b) = 0]. If Ax− b is nonzero, then the product
rT(Ax− b) has equal chance of being 0 and 1, so the probability is exactly 1/2.

Now notice that once we fix r, the expression rTAx is just some linear combination of the xis; so
checking that rTAx = rTb amounts to verifying that some linear combination of the xis adds to

8

the desired value rTb. In the worst case, however, this expression may involve all the variables xi,
which take n queries to read, so it seems like we have not made any progress towards verifying the
satisfiability of the LIN system with a constant number of queries.

Now comes the second idea. A classical NP-proof for a LIN instance consists of the values for all
the variables x1, . . . , xn. In the PCP proof, we will ask not only for the values of the variables, but
also for the value of every linear combination of them. In other words, for every a ∈ {0, 1}n, there
will be a bit in the proof (indexed by the string a) which is supposed to give the value of the linear
combination 〈a, x〉 = a1x1 + · · ·+ anxn. Then, to find out the value rTAx, it is sufficient to query
this proof at the location a = rTA (which is an n bit vector).

So here is the suggested PCP for LIN: On input a LIN system Ax = b, the verifier expects a proof
π ∈ {0, 1}2n

, where for every a ∈ {0, 1}n, π(a) is supposed to equal the value 〈a, x〉. The verifier
chooses a random r ∈ {0, 1}m, computes a = rTA and checks that π(a) = rTb.

If the system Ax = b is satisfiable and x is a satisfying assignment, then the proof π where
π(a) = 〈a, x〉 clearly makes the verifier accept with probability 1. Now we want to claim that if the
system is not satisfiable, then the verifier rejects with probability at least 1/2.

We can try to reason along the following lines: If Ax 6= b for every x, then no matter what x is, we
have that rTAx 6= rTb with probability 1/2. Since π(a) = 〈a, x〉 = rTAx, the verifier rejects with
probability 1/2. However, this reasoning is incomplete. What is the problem?

The issue is that the verifier cannot be sure that π(a) = 〈a, x〉 for every proof location a; the proof
may easily claim, say, that x1 = 0, x2 = 0, but x1 + x2 = 1. If the verifier queries this proof at
x1 + x2, he will not be aware of this inconsistency. So a proof can try to cheat the verifier in the
sense that it tells it whatever it wants to hear in order to accept (i.e. π(rTA) could always have
the value rTb.)

To take care of this issue, the verifier wants to “force” the proof to be of a particular form: Namely,
he wants to be sure that for every a, π(a) = 〈a, x〉 for some assignment x. But how can the verifier
force an exponentially long proof to have this property for every a while making only a constant
number of queries?

This is in fact impossible. What the verifier will be able to do instead is ensure that with high
probability, π(a) = 〈a, x〉 for most (say 90%) values of a. Once this is established, it turns out that
the verifier can recover the other (10%) of the values, and thus have (with high probability) virtual
access to a correct proof of the form π(a) = 〈a, x〉.

3.1 The linearity test

Let us reformulate the problem we have to deal with: Given access to a proof π, which we think
of as a string of length 2n, we want to guarantee (with high probability) that π is of the form
π(a) = 〈a, x〉 for some x while making only a constant number of (random) queries into π.

To do this it will be useful to think of π not as a proof but as a function of a: This is a function
f that maps {0, 1}n to {0, 1}. We want to check that f is of the form f(a) = 〈a, x〉 for some x; in
other words, f should be a linear function over F2, the field of two elements.

9

It should be clear that if we only make a constant number of queries into f , it should be impossible
to distinguish (with constant probability) the case when f is linear from the case when f is not
linear. We can take any linear function (say the all zero function), and make it non-linear by
changing one random value of it. Then no test that makes a constant number of queries is likely
to query this particular value, so it will fail to detect this non-linearity.

But in some sense taking a linear function and changing it in one place makes it only a little bit
non-linear; it turns out that, for our purposes, we can view such a function as essentially linear. It
will be sufficient for us to distinguish linear functions from those that are “far” from being linear.

Definition 6. A function f : {0, 1}n → {0, 1} is δ-close to linear if there is a linear function
`(x) = 〈b, x〉 such that f and ` differ in at most δ · 2n outputs. We say f is δ-far from linear if it is
not δ-close to linear.

We are now ready to describe linearity testing as the following (oracle) promise problem. Given
oracle access to a function f : {0, 1}n → {0, 1}:

Yes instances: f is a linear function.
No instances: f is δ-far from every linear function.

Think of δ as some constant, like 1/100.

Theorem 7. Assume δ < 1/12. There is a randomized procedure T ? which (on input 1n) makes 3
queries into its oracle and

• If f : {0, 1}n → {0, 1} is linear, then T f accepts with probability 1,

• If f is δ-far from linear, then T f rejects with probability at least δ/2.

The idea behind the linearity test is extremely simple. A function f : {0, 1}n → {0, 1} is linear if
and only if

f(x) + f(y) = f(x+ y)

for every pair x, y ∈ {0, 1}n. The linearity test will check that this relation is satisfied for a random
pair x, y.

The linearity test: On input 1n, choose x, y ∈ {0, 1}n independently at random, query the oracle
at locations x, y and x+ y and accept iff f(x) + f(y) = f(x+ y).

Clearly, if f is linear, the test accepts with probability 1. We need to show that if f is δ-far from
linear, then the test rejects with probability at least δ/2. We will prove the contrapositive, namely

If the test rejects with probability less than δ/2, then f is δ-close to linear.

So let’s assume that the test rejects with probability < δ/2. We define the function ` : {0, 1}n →
{0, 1} at x to equal the majority (over y) of the values f(x+ y) + f(y), namely:

`(x) =

{
1, if Pry[f(x+ y) + f(y) = 1] ≥ 1/2,
0, otherwise.

10

We will now prove that (1) ` is δ-close to f and (2) ` is linear.

The first part is straightforward. By assumption, we have that

Prx,y[f(x) 6= f(x+ y) + f(y)] < δ/2

so by Markov’s inequality,

Prx
[
Pry[f(x) 6= f(x+ y) + f(y)] ≥ 1/2

]
< δ.

Now if Pry[f(x) 6= f(x + y) + f(y)] < 1/2, then Pry[f(x) = f(x + y) + f(y)] ≥ 1/2 and therefore
`(x) = f(x), so ` and f match on a 1− δ fraction of outputs.

For the second part, by the same reasoning as above, we have that

Prx
[
Pry[f(x) 6= f(x+ y) + f(y)] ≥ 1/4

]
< 2δ.

Let S ⊆ {0, 1}n be the set of those x such that

Pry[f(x) 6= f(x+ y) + f(y)] < 1/4.

Fix a pair of inputs x, y from S. We have that

Pru[`(x) 6= f(x+ u) + f(u)] < 1/4 since `(x) = f(x) for x ∈ S
Pru[`(y) 6= f(y + u) + f(u)] < 1/4 since `(y) = f(y) for y ∈ S

Pru[`(x+ y) 6= f(x+ u) + f(y + u)] < 1/2 by definition of `

Taking a union bound, we have that if x, y ∈ S, then

Pru[`(x) + `(y) 6= `(x+ y)] < 1.

Since the quantity inside the probability is independent of u, it must hold that `(x)+`(y) = `(x+y)
for all x, y ∈ S.

Now let x, y be arbitrary. Then

Pru[`(x) 6= `(x+ u) + `(u)] < Pr[x+ u 6∈ S or u 6∈ S] < 4δ

since if both x+ u and u are in S, then `(x+ u) = `(x) + `(u). Similarly

Pru[`(y) 6= `(y + u) + `(u)] < 4δ
Pru[`(x+ y) 6= `(x+ u) + `(y + u)] < 4δ

Taking a union bound again, we have that

Pru[`(x) + `(y) 6= `(x+ y)] < 12δ ≤ 1

and since the event is independent of u, equality must hold for all x, y, so ` is linear.

11

3.2 A weak PCP for LIN

We are now almost ready to describe our weak PCP for LIN. Let’s recall what we did so far: Given
a system of equations Ax = b, we expect a PCP proof of the form π(a) = 〈a, x〉 for all a ∈ {0, 1}n.
The linearity test (repeated a constant number of times) allows us to verify, with probability at
least say 9/10, that π is 1/10-close to a proof of this form. If we could tell that π was exactly
of this form, then we can finish by choosing a random linear combination r of the equations in
the system, query the proof at location rTA, and accept iff the queried value equals rTb. By our
previous reasoning, if π encodes a satisfying assignment for the system then the verifier accepts
with probability 1 and if it doesn’t, it accepts with probability 1/2.

There is one problem left to resolve: The linearity test does not allow us to conclude that π is
exactly linear, but merely that it is 1/10-close to linear.

However, it turns out that once we know that π is 1/20-close to a linear function `, we can simulate
a query into ` by making two queries into π. The idea is simple: To find the value of `(y),
we choose a random u and output π(y + u) + π(u). Since both y + u and u are random, with
probability 1 − 2/10 = 4/5 we will have π(y + u) = `(y + u) and π(u) = `(u), and therefore
π(y + u) + π(u) = `(y + u) + `(u) = `(y). This procedure which extracts the value of `(y) out of
π (which is a faulty version of `) is called local correction, as it allows us to correct the faults in y
locally (i.e. with very few queries).

We can now give the full PCP for LIN: On input Ax+ b and given oracle access to a proof π, first
run the linearity test a constant number of times to ensure that with probability at least 9/10, π is
1/20-close to a linear function `. Then choose a random r and compute the value a = rTA. Now to
find `(a), choose a random u and query π at locations a+u and u. Accept iff π(a+u)+π(u) = rTb.

If Ax + b is satisfiable, then the proof π(a) = 〈a, x〉 will pass the linearity test with probability 1,
and π(a + u) + π(u) = 〈a, x〉 with probability 1. Since 〈a, x〉 = rTAx = rTb, the verifier accepts
with probability one.

If Ax + b is not satisfiable, let `(a) = 〈a, x〉 be the closest linear function to the proof π provided
to the verifier. By the analysis of the linearity test, with probability 9/10, π and ` are 1/10-
close. Assume this is the case. Then rTAx 6= rTb with probability 1/2. On the other hand,
`(a) = π(a + u) + π(u) with probability at least 4/5. All these events hold with probability
1− 1/10− 1/2− 1/5 ≥ 1/10; if this is the case, then

π(a+ u) + π(u) = `(a) = 〈a, x〉 = rTAx 6= rTb

so the verifier rejects.

To summarize, if Ax = b is satisfiable, there exists π which makes the verifier accept with probability
1, and if not, then every π makes the verifier reject with probability at least 1/10. We can repeat
the PCP a constant number of times to amplify the rejection probability to 1/2.

12

3.3 A weak PCP for all problems in NP

We now generalize the PCP for LIN into one that works for all of NP. To do so we need an
NP-complete problem which looks like LIN. This problem is called QE (for quadratic equations
modulo 2). An instance of QE is a system of homogeneous quadratic equations modulo 2 like

x1x3 + x2x2 + x5x7 = 1
x1x1 + x1x3 + x4x4 + x2x7 = 0

...
x2x2 + x3x3 = 0.

You can show that this problem is NP-complete by reduction from CSAT, in much the same way
we proved that SAT is NP-complete.

Now QE looks a lot like LIN, except that the equations are modulo 2. Each of these equations is
of the form

n∑
i,j=1

aijxixj = b

with aij , b ∈ {0, 1}. This suggests the following PCP: Interpret the proof π as a string of length
2n

2
, with the hope that π(a11, . . . , ann) should equal the value of

∑n
i,j=1 aijxixj for some x. Then

just like in the case for LIN, we can take a random linear combination of the equations and query π
at the appropriate location to verify that x is indeed a satisfying assignment; if it is not, by exactly
the same reasoning as before, we detect an inconsistency with probability 1/2.

Again, the main problem is how to ensure that the proof π is of the correct form, namely

π(a11, . . . , ann) =
n∑

i,j=1

aijxixj

for some x ∈ {0, 1}n. Notice that this π is a linear function of the aijs; so we can at least check
that it is close to linear using the linearity test we designed.

However, checking linearity is not sufficient; we must also guarantee that the coefficients of this
linear function are of the form xixj for some x. To do so, it will help to have access to an auxiliary
proof ρ of length 2n whose expected form will be

ρ(b1, . . . , bn) = b1x1 + · · ·+ bnxn.

Given access to such a ρ, we can also verify that it is close to linear by running the linearity test.
Once we know that π and ρ are close to linear, we can treat them both as linear by using local
decoding, so let’s assume that they are both linear. Now it remains to check that they are consistent
(i.e., they encode the same x). How do we check consistency? To do this, notice that if π and ρ
are indeed consistent, then it must be the case that for every b, c ∈ {0, 1}n:

ρ(b1, . . . , bn)ρ(c1, . . . , cn) = π(b1c1, b1c2, . . . , bncn)

13

which suggests the following consistency test: Choose b, c at random from {0, 1}n and check that
the above relation is satisfied.

Clearly if ρ and π are consistent linear functions this test will accept with probability 1. We now
argue that if ρ and π are linear but inconsistent then the test will reject with probability at least
1/4.

Any two linear functions ρ and π have the form

ρ(b1, . . . , bn) = b1x1 + · · ·+ bnxn

π(a11, . . . , ann) = a11y11 + a12y12 + · · ·+ annynn

for some x ∈ {0, 1}n, y ∈ {0, 1}n2
. Now suppose that yij 6= xixj for at least one pair (i, j). Then

we claim that with probability at least 1/4,

ρ(b1, . . . , bn)ρ(c1, . . . , cn) 6= π(b1c1, b1c2, . . . , bncn).

To see this, we evaluate both sides:

ρ(b1, . . . , bn)ρ(c1, . . . , cn) =
n∑

i,j=1

bicjxixj

π(b1c1, . . . , bncn) =
n∑

i,j=1

bicjyij .

Let’s think of the difference of the two: For fixed x and y, this is a quadratic polynomial in the
variables bi and ci. Our assumption is that at least one of the terms xixj and yij are different,
so this polynomial is not identically zero. But when we evaluate a non-zero quadratic polynomial
over F2 at a random input, the probability of it vanishing is at most 1/4. One way to see this is to
write the polynomial in the form

n∑
i=1

bi · (some linear function of c1, . . . , cn).

Since the polynomial is non-zero, at least one of these linear functions is non-zero, so with prob-
ability 1/2 it won’t vanish after c1, . . . , cn are replaced by random values. After this replacement
is done, we just get a non-zero linear function in b1, . . . , bn, so with another 1/2 probability this
won’t vanish after b1, . . . , bn are replaced by random values.

To summarize, we have the following PCP for QE. The proof is of the form (π, ρ), where π has
length 2n

2
and ρ has length 2n. We expect ρ and π to encode some satisfying assignment x to the

system of equations. To check this is the case, we run the following tests:

1. Linearity test: Run the linearity test a constant number of times on π and ρ. This ensures
that with probability 99%, both π and ρ are 1%-close to linear functions.

2. Consistency test: Choose random b, c ∈ {0, 1}n. We want to check that

ρ(b1, . . . , bn)ρ(c1, . . . , cn) = π(b1c1, b1c2, . . . , bncn)

14

but because ρ and π are only 1%-close to linear (and not linear), we do so via local decoding:
So we choose extra random u, v ∈ {0, 1}n, w ∈ {0, 1}n2

and check that

(ρ(b+ u) + ρ(u))(ρ(c+ v) + ρ(v)) = π(b ◦ c+ w) + π(w)

where b ◦ c = (b1c1, b1c2, . . . , bncn).

3. Satisfiability test: Choose random r ∈ {0, 1}m. Take a linear combination of the equations
as indexed by r and let a denote the vector of coefficients. We want to check that π(a) = rTb,
but because π is only 1%-close to linear we do so via local decoding: So we choose an extra
random w ∈ {0, 1}n2

and check that π(a+ w) + π(w) = rTb.

4. If all test pass accept, otherwise reject.

By the previous discussion (modulo the exact calculation of probabilities), we have proved that if
the system is satisfiable, then π and ρ that encode a satisfying assignment make the verifier accept
with probability 1. If not, then no matter what π and ρ are, the verifier rejects with constant
probability. Since the verifier makes only a constant number of queries, we obtain the desired PCP
for NP.

