
CSC 5170: Theory of Computational Complexity Lecture 3
The Chinese University of Hong Kong 25 January 2010

In the last lecture we introduced the model of polynomial-size boolean circuits. This is a computa-
tional model that has some realistic features. Also, there is hope that by studying what is difficult
for circuits we can make progress on the P versus NP question. Although proving that NP has
no polynomial-size circuit families is formally more difficult than proving P does not equal NP,
circuits may be easier to reason about than Turing Machines.

1 Constant depth circuits

Questions in complexity theory are often quite hard. To get started we look for easier variants
of the question that might be more tractable. To show that NP 6⊆ P/poly it is sufficient to show
that SAT (or some other NP-complete problem) does not have polynomial-size circuit families.
However reasoning about the power of general circuit families for SAT has turned out to be quite
difficult. One way to make the problem easier is to put some restrictions on the type of circuit we
are considering.

We have already seen a particular very simple kind of circuit: A CNF formula. We can think of a
CNF formula as a circuit with two “layers” of non-input gates: the bottom layer are the OR gates
(the clauses) and the top layer has one AND gate, representing the output of the formula. There
is another kind of circuit with two layers, in which the bottom layer has AND gates and the top
layer has an OR gate.

In general, given any circuit, we can layer the gates in a similar manner, so that layer 0 contains
the input gates, and layer i contains exactly those gates whose values can be computed from the
gates at levels i − 1 or lower. With a little extra work we can arrange the gates so that all gates
in the same layer are of the same type, and the layers alternate (so even layers have AND gates
and odd layers have OR gates, or vice versa). This transformations does not affect the number of
layers.

The depth of a circuit is the layer in which the output gate is found. Alternatively, it is the length
of the longest directed path in the underlying graph.

In general, a circuit of size s can have depth as large as Ω(s). It is believed that in the containment
P ⊆ P/poly, there are problems in P that require circuits of depth Ω(n) on inputs of length n.
Therefore polynomial-size circuit families of depth o(n) are considered unlikely to capture all of
P. However, coming up with examples of problems in P that cannot be computed by such circuits
could be a useful warmup towards P 6= NP.

In fact, we will study the class of circuits that have constant depth – that is, the depth is completely
independent of the input length. In some sense, these are the simplest kinds of circuits that can
do some nontrivial computations. CNFs and DNFs can already compute all functions, although
some of them require circuits of exponential size. However, it seems plausible that as we increase
the depth of the circuits, more and more interesting things can be computed.

1

2

Definition 1. The class AC0 consists of those decision problems L that admit polynomial-size
circuit families {C0, C1, . . . } such that the depth of Ci is at most c for come constant c.

Although AC0 circuit families appear extremely limited, they can already compute some nontrivial
things. For example the partial function family

APXMAJ(x1, . . . , xn) =

{
1, if x1 + · · ·+ xn ≥ 0.6n,
0, if x1 + · · ·+ xn ≤ 0.4n.

can be computed by a polynomial-size circuit family of depth 3.

However, we do not even know how to prove that some problem in P requires circuits of depth
ω(log log n) on inputs of length n.

2 Circuit lower bounds for parity

What kinds of problems are difficult for AC0 circuits to solve? To develop some intuition, let’s start
by looking at polynomial-size depth 2 circuits, in particular DNFs. A DNF is an OR of clauses,
each of which is the AND of many literals.

One class of functions that are hard for DNFs to compute are those that are “sensitive” to the
values of all their variables – so that changing the value of any variable is likely to affect the value
of the function. We illustrate this point by the most extreme such function:

XOR(x1, . . . , xn) =

{
1, if x1 + · · ·+ xn is odd,
0, if x1 + · · ·+ xn is even.

How can we compute such a function by a DNF? Assume that a DNF C on n inputs computes the
XOR function. We claim that each clause of C must depend on all n variables: If any variable is
omitted from the clause, then it is possible to set the values of the others so that the clause (and
therefore C) is always true; but we can make XOR false by setting the omitted variable to be the
XOR of the other ones. So each clause depends on all n variables. Now suppose C has t such
clauses A1, . . . , At that depend on all its variables. If we choose a random input x ∈ {0, 1}n, we
have that

Prx∼{0,1}n [C(x) = 1] ≤
t∑

i=1

Prx∼{0,1}n [At(x) = 1] ≤ t · 2−n,

while Prx∼{0,1}n [XOR(x) = 1] = 1/2. So if C computes XOR, it must be that t ≥ 2n−1. So any
DNF for XOR must have size at least n2n−1. One can make a similar argument for CNF.

Can circuits of larger depth help compute XOR more efficiently? In fact they can: For example
XOR on n variables can be computed by a circuit of depth 3 and size O(2

√
n). Although this is an

improvement, it is far from a polynomial.

In fact, XOR cannot be computed by any circuit family of any constant depth and polynomial size:

Theorem 2. The function XOR is not in AC0.

3

This is an example of a circuit lower bound: XOR is a function which is in NP (and in fact in
P), but it is not in AC0. Therefore, NP 6⊆ AC0. And while we cannot hope to extend this result
to show NP 6⊆ P/poly, perhaps we can expect some ideas from the proof to be valuable in this
endeavor.

To prove Theorem 2 we have to show that for every circuit C that is not too large, C and the XOR
function differ on at least one input. Extending our intuition for DNF, we can hope to show that
the reason that C and XOR are different is that XOR depends on all its variables, while C might
not.

Indeed, we will show that if C is not too large, there is at least one input variable xi of C and one
setting of all the other input variables so that for this setting, C does not depend on the value of
xi. Clearly this is not true for the XOR function, so C cannot compute XOR. But circuits can
be very different, so how do we know for which xi and for which setting of the other variables C
will be independent of xi? To do this we apply the probabilistic method: We will show that for
a random choice of i and a random setting of values for the variables x1, . . . , xi−1, xi+1, . . . , xn, C
does not depend on xi with some nonzero probability.

To establish this fact we will proceed in stages. At each stage we will fix some of the inputs of C
in such a way that this fixing will simplify the circuit C: We will show that after an appropriate
fixing of some of the inputs, the circuit C can be replaced by an equivalent circuit C ′ such that
C ′ has about the same size as C (it is only slightly bigger), but its depth goes down by 1. After
repeating this process a constant number of times, we will end up with a “small” DNF. By the
above argument, a “small” DNF cannot depend on all its variables, so the original C could not
have depended on all its variables either.

The heart of the argument is in showing how to reduce the depth of the circuit C after restricting
the values of some of the variables. To do so we consider those gates of C which are at the second
level from the bottom. Let us assume that this is an OR layer, so each such gates computes a
DNF of the input. We will argue that we can always restrict the values in such a way that after
restriction, each of these second layer DNFs can be converted to an equivalent CNF of comparable
size. After applying this transformation to all level 2 gates the circuit C, whose three bottom layers
are of the type AND-OR-AND, is converted to an equivalent circuit C ′ whose three bottom layers
are AND-AND-OR. We can now merge levels 2 and 3 and we end up reducing the depth of C by
one (as long as C has depth at least 3 to begin with).

How can we find a choice of restrictions for the input that yields this collapse in the bottom layers
of C? Again we use the probabilistic method: We will argue that a random choice of a restriction
is likely to yield such a collapse.

We now state the main lemma that allows us to replace DNFs with CNFs after a restriction that
randomly assigns some subset of the variables. The parameters may look a bit strange but their
choice will hopefully become clear in the proof. For a collection of variables x1, . . . , xn, a ρ(n)-
random restriction is a partial assignment to a subset of the variables obtained by the following

4

random process. For each xi independently at random,

xi is assigned

0, with probability (1− ρ(n))/2,
1, with probability (1− ρ(n))/2,
remains unassigned, with probability ρ(n).

The lemma says that a random restriction is likely to reduce D to a formula that depends on only
a constant number of its variables.

Lemma 3. Let c be a constant and assume n is sufficiently large (in terms of c). Let D be a DNF
with n inputs and at most nc clauses. With probability 1 − n−c, after a n−1/2-random restriction,
there exists a CNF C of size nc′ over the unrestricted variables y such that DR(y) = C(y) for all
unrestricted y, where DR denotes the restricted version of D. Here c′ is some constant that depends
only on c.

With this lemma in hand, we can finish the proof of Theorem 2 as follows. Let’s start with an
AC0 circuit family of size nc/2 and depth d ≥ 3. Assume that the gates at the second layer in this
circuit are OR gates. The case of AND gates is similar. By the lemma, each of these DNF reduces
to a CNF of size nc′ with probability 1 − n−c. By a union bound, all the layer 2 DNFs reduce to
CNFs of size nc′ with probability greater than 1/2. Also, by a deviation inequality, the probability
that after the restriction, D depends on fewer than

√
n/2 variables is at most 1/2. It follows that

for some choice of restriction, after replacing the layer 2 DNFs with CNFs and merging layer 2 and
layer 3, we can replace the original circuit by a new equivalent circuit, whose size is still polynomial
in the length of its input, but its depth is one less than the one of the original circuit.

After repeating this operation sufficiently many times we end up with a depth 2 circuit family whose
size is polynomial in the number of its variables. We argued that the circuits in such a family cannot
depend on all their variables. On the other hand, even after applying all these restrictions, the
XOR function will still depend on all of its variables. Therefore the original circuit family cannot
compute the XOR function.

Proof of Lemma 3. We will do the proof in two stages. An n−1/2-random on the variables of D can
be viewed as first applying an n−1/4 random restriction, then applying another independent n−1/4

random restriction on the unassigned variables.

We will show that with probability 1−n−c/2, after the first restriction, each clause of D depends on
at most 9c of the restricted variables. Then we will show that conditioned on this, with probability
1 − n−c/2, after the second restriction D can be replaced with C. The lemma then follows by a
union bound.

The first restriction. We write D = A1∨· · ·∨As, where s ≤ nc and each Ai is an AND of literals.
Let A′i denote the clause Ai after the first random restriction and after simplifying each clause.
For each i, we will bound the probability that A′i depends on 9c or more literals. We consider two
cases. If Ai has more than 4c log n literals, then the probability that none of its literals is assigned
to 0 (false) in the restriction is at most

[(1− n−1/4)/2]4c log n ≤ n−2c/2

5

so with probability at least 1 − n−2c/2, one of the literals of Ai is assigned 0, and A′i depends on
zero literals.

If Ai has at most 4c log n literals, we will argue that the probability that at least 9c of them survive
the restriction is at most n−2c/2. To do this we look at all possible subsets of 9c literals and take
a union bound. The probability that A′i has 9c or more unassigned literals is at most(

4c log n
9c

)
· (n−1/4)9c ≤

(4c log n
n1/4

)9c
≤ n−2c/2.

Now by a union bound, we have that after the first random restriction,

Pr[some A′i has ≥ 9c literals] ≤
s∑

i=1

Pr[A′i has ≥ 9c literals] ≤ s · n−2c/2 ≤ n−c/2.

The second restriction. Now let’s consider the formula D′ = A′1 ∨ · · · ∨ A′s obtained after the
first restriction and let’s assume that each clause A′i depends on less than 9c literals. We will show
that after the second restriction, it is quite likely that D′ can be converted into the desired CNF
C.

Let k = 5c29c log n and ki = (40c29c)ik. We will build a tree whose nodes are labeled by DNFs as
follows. The root is labeled by D′. Here is how the rest of the tree is constructed. Suppose we
have constructed the tree up to level i. To construct level i+ 1, we do the following for every node
at level i:

1. If F is a constant (always 0 or always 1), make F a leaf.

2. If there is a collection of ki + 1 clauses of F that are disjoint (i.e. they do not share any
variables), make F a leaf.

3. Otherwise, there exists a collection xi1 , . . . , xi9cki
of variables that cover all the clauses of F

(namely, each clause of F contains at least one of these variables). For every possible partial
assignment xi1 = ai1 , . . . , xi9cki

= ai9cki
, make a child of F and label it by the DNF derived

from F by this partial assignment. Notice that when we go from a node to its children, the
number of literals in every clause goes down by 1.

We now claim that with probability at least 1 − n−c/2, after the second random restriction, all
leaves in the tree become constants. Consider the effect of the second restriction on leaves F of
the second type at level i. Let F ′ be the restricted version of F . Each clause of F has at most 9c
literals, so the restriction sets it to 1 with probability at least 2−9c. Since the clauses do not share
variables, they are each set to 1 independently with this probability and so

Pr[F ′ 6≡ 1] ≤ (1− 2−9c)ki ≤ e−ki2
−9c

Notice that the depth of the tree is at most 9c, since the size of the clauses shrinks by 1 at each

6

step. The number of nodes at level i is at most 29c(k0+k1+···+ki−1) < 2ki2
−9c/4, so by a union bound

4 Pr[some leaf F ′ is not constant] ≤
9c∑

i=0

Pr[some level i leaf F ′ is not constant]

≤
9c∑

i=0

2ki2
−9c/4e−ki2

−9c ≤
9c∑

i=0

2−ki2
−9c/4 ≤ 2 · 2−k2−9c/4 ≤ n−c/2.

Now let’s assume all leaves of the tree are constant under the second random restriction. In this
case, we will derive the CNF C from the tree. Some branches in the tree may be incompatible
with the second restriction. After throwing out these branches we get a smaller tree. We look at
each path that terminates at a leaf labeled by the constant 0. Each such path represents a partial
assignment of some of the variables xi1 = ai1 , . . . , xit = ait . Such an assignment always makes the
restricted DNF DR false, so we add the following clause to C to represent this fact:(∧

aij
=0

xij

)
∧
(∧
aij

=1

xij

)
.

The collection of all such clauses exactly represents the formula DR. How many such clauses are
there? Their number is bounded by the number of leaves in the tree, which is at most

29c(k0+···+k9c−1) ≤ 2k9c2−9c/4 = n2O(c2)
.

3 Increasing the depth

What is the significance of the circuit lower bound for AC0 we just proved to the P versus NP
question? On the positive side, we have an example of a nontrivial model of computation – AC0

circuits – that provably cannot compute a function in NP. Using reductions we can derive the
consequence that AC0 circuits cannot compute other problems in NP like SAT.1 On the negative
side, the lower bound we proved is way too strong: We have shown that AC0 not only fails to solve
problems in NP but also problems in P! In particular, we expect any reasonable computational
device to easily compute the XOR function, so the model of constant depth circuits is much too
weak.

How can we beef up constant depth circuits to make them a more realistic model of computation?
A natural way is to try and increase the depth. We’ll do so in a very careful way, so as to keep the
circuit as simple as possible. Let’s start with the simple case of an AND gate of unbounded fan-in
(in-degree) n. One way to “compute” this gate is to draw a circuit AND gates of depth log n where
each gate in the circuit now has fan-in 2. We can do a similar transformation on the OR gates. If
we start with an AC0 circuit family and apply this transformation to all the AND/OR gates, we
obtain a new polynomial-size circuit family where the depth of the nth circuit is now O(log n), but
every gate has fan-in 2. This is the circuit class NC1.

1We have to be careful when we do the reductions – when talking about AC0 it is not sufficient that the reductions
preserve polynomial running time but they must also preserve constant depth.

7

Definition 4. The class NC1 consists of those decision problems L that admit circuit families
{C0, C1, . . . } such that every gate in every circuit in the family has fan-in 2 and the depth of Ci is
at most O(log n).

The fact that NC1 circuit families have polynomial size is automatic: If every gate has fan-in 2 and
the depth is O(log n), then the circuit size is at most 2O(log n) = nO(1).

We just saw that AC0 ⊆ NC1. But is NC1 more powerful than AC0? Yes, because NC1 circuits
can compute the XOR function: To compute XOR on n variables, recursively compute XOR on
n/2 variables and XOR the results together. This gives a circuit of size O(n) and depth O(log n).
It turns out that NC1 circuit families can also compute the majority functon, which is also not in
AC0:

MAJ(x1, . . . , xn) =

{
1, if x1 + · · ·+ xn ≥ n/2,
0, if x1 + · · ·+ xn < n/2.

Which problems are hard for NC1? Is SAT hard for NC1? We don’t know. So we turn to the most
fruitful trick of complexity theory: When you can’t prove, reduce to something simpler. Let’s look
more deeply into NC1 and see what insights we can get.

For the rest of this lecture we will assume that the fan-in of all circuits and formulas in question is
2.

4 Circuits and formulas

A (boolean) formula is a circuit where every gate (apart from the input gates) has out-degree 1. It
is believed that polynomial-size families of formula are less powerful than the corresponding circuit
families, as they are not allowed to reuse previously computed values.

However, in the case of NC1 circuit families, it turns out that the out-degree does not make a
difference. This follows from the following theorem, which gives a general method for converting a
circuit into a slightly larger formula:

Theorem 5. If f has a (fan-in 2) circuit of size s, and depth d, then it has a formula of size s2d

and depth d.

Proof. By induction on the depth d. Let C be the circuit for f of size s and depth d and look at the
topmost gate G of C. Then C(x) = G(f1(x), f2(x)), where f1 and f2 are the functions computed
by the gates that connect into G. By assumption, f1 and f2 each have circuits of size at most s− 1
and depth at most d − 1, so they can be computed by formulas of size (s − 1)2d−1 each. Putting
these two formulas together we obtain a formula for C of size 2(s− 1)2d−1 + 1 < s2d.

A slightly more surprising fact is that is a family of boolean formulas has polynomial size, we can
assume without loss of generality that it also has logarithmic depth:

Theorem 6. If f has a formula of size s, then it has a formula of size O(s2) and depth O(log s).

8

Proof. When we count the gates in this analysis we will disregard the 2n input gates. If f has size
s, then there must be a wire in the circuit that splits the other gates into sets of size at most s/2
each. Suppose this wire goes out of gate G. Let g be the formula computed by G and f0, f1 be the
formulas obtained when G is replaced by the constants 0 and 1, respectively (and the formula is
simplified). Then we can write the expression

f(x) = (f0(x) ∧ g(x)) ∨ (f1(x) ∧ g(x))

All of the formulas f0, f1, and g have size s/2, so we can recursively apply the same argument to
them to obtain a formula of depth O(log s) for f . The size of the new formula obeys the recursive
relation size(s) = 4size(s/2) + 3, which solves to size(s) = O(s2).

