
CSC 5170: Theory of Computational Complexity Lecture 4
The Chinese University of Hong Kong 1 February 2010

Computational complexity studies the amount of resources necessary to perform given computa-
tions. The most relevant resource is computation time – the number of steps necessary to come
up with the correct answer. We defined the running time of a Turing Machine, argued that this
notion roughly captures the time complexity of algorithms, and saw that more time allows Turing
Machines to decide more problems. We then looked at circuits, a non-uniform version of Turing
Machines, and showed that lower bounds on circuit size give lower bounds on running time.

Our strategy to understand the limitations of efficient computation was to restict the computational
model as much as we need until we could prove something about its limitations. That’s how we
ended up studying AC0 circuits. But AC0 circuits turned out to be too unrealistic to capture even
simple computations like XOR. Unfortunately, once we give our circuits more power – say by going
from AC0 to NC1 – we don’t know how to prove which things are hard for them anymore.

Today we will look at another attempt to refine our understanding of efficient computation. Not all
time-efficient computations are made equal. For example consider these two programs that reverse
an array of n integers:

int [] r1( int [] x) {
int n = length(x);
int [] y = new int[n];
for (int i = 0; i < n; i++) y[i] = x[n-i-1];
return y;

}

and

int [] r2( int [] x) {
int n = length(x), tmp;
for (int i = 0; i <= n/2; i++) {

tmp = x[n-i-1];
x[n-i-1] = x[i];
x[i] = tmp;

}
return x;

}

Both of these programs reverse the array x in linear time, but there is a difference: To do the
reversal, the first program needs to allocate an additional array y of n integers, while the second
one can do the reversal in place. So program r2 is not only time-efficient, but also memory-efficient.
Today we begin to study how the use of memory, or space, affects efficient computation.

1



2

1 Space-bounded Turing Machines

When we define the computation space of a Turing Machine, we have to be a bit more careful than
when we talk about time. The reason is that while a Turing Machine needs at least linear time to
do most things (although there are exceptions), a lot of interesting tasks can already be done in
sublinear space. For example suppose we want to compute the majority of n bits. You can convince
yourself that this takes must take at least linear time (because all input bits must be read), but it
can be done in space O(log n) – at each step it is sufficient to keep track of the sum of the bits seen
so far.

To account for cases like this one, when we talk about space-bounded Turing Machines, we will
have the following model in mind. Let’s start by describing Turing Machines for decision problems.
The machine has two tapes, a read-only input tape and a read-write work tape. The transitions
of the TM can depend on the contents of the current cell on both tapes, but we are only allowed
to write symbols on the work tape. The computation ends when the TM writes an answer (0 for
reject, 1 for accept) on the work tape and it goes into a special halting state. (We will also assume
(without loss of generality) that before the TM halts both tape heads are returned to the initial
position.) The space complexity of TM M on input x is the total number of cells ever used (i.e. the
rightmost position of the head) on the work tape.

When the TM is required to write an answer (for example, it is solving a search problem) it has
an additional write-only, one-way output tape where the answer will be written. The head on the
write tape can only stay in place or move to the right.

We say a Turing Machine M runs in space s(n) if for all x ∈ {0, 1}n, the space complexity of M
on input x is at most s(|x|).

In the case of non-deterministic Turing Machines, we will require that the non-determinism tape is
not only read-only but also one-way – the head always moves left to right. This requirements models
the intuition that when the space of our computation is bounded, we should not even have enough
space to remember our previous non-deterministic choices, so once a non-deterministic choice is
“used”, it is forgotten (unless the machine stores it explicitly on its work tape).

We say a non-deterministic Turing Machine N runs in space s(n) if for every input x and all
non-deterministic choices N is allowed to make, the space complexity of N on input x is at most
s(|x|).

Clearly a TM that runs in time t(n) also runs in space t(n). Therefore to refine our understanding
of polynomial-time Turing Machines we need to impose a time bound which is less than polynomial
in n. The simplest scenario we may wish to model are computations that run “in-place”, like the
program r2 above. How much of the work tape do such computations use? Initially you may think
that an in-place computation use only constant memory, as all they need are some local counters
like n and tmp. But if you think carefully you realize that these counters in fact use log n cells
of memory: The input array x has length n, so these counters that eventually need to index all
positions in x will take up log n bits each.

So intuitively, even if we want to make a single pass over an input of length n, we need at least log n



3

cells on the work tape.1 Therefore it makes sense to look at logarithmic space Turing Machines as
the simplest realistic, space-bounded model of efficient computation.

Definition 1. The class L consists of all decision problems that can be decided on a Turing Machine
that runs in space O(log n) on inputs of length n. The class NL consists of all decision problems
that can be decided on a nondeterministic Turing Machine that runs in space O(log n) on inputs
of length n.

Notice that our definition does not make any reference to time complexity – can an algorithm that
runs in logarithmic space take exponential time? In fact not: If M runs in logarithmic space, then
M must run in polynomial time. We reason as follows. A computation on M on input x can be
viewed as a walk on the configuration graph of M on input x. This is a directed graph whose nodes
are triples (q, i, w), where q ranges over all states of M , i is an integer that marks the position of the
head on the input tape, and w ranges over all possible contents of the work tape (including a special
marker for the head). The graph contains an edge from (q, i, w) to (q′, i′, w′) if this represents a
valid transition in a computation of M on input x. If M runs in logarithmic space, when x has
length n, the number of nodes in the graph is O(1) × n × 2O(log n) = nO(1). Now notice that in a
halting computation on M on x, no node in the graph can be repeated twice, so the computation
must terminate within a polynomial number of steps.

In particular, this argument shows that L ⊆ P. Could it be the case that L = P? We do not
know, but most computer scientists believe this is not the case. The conjecture L 6= P formalizes
the belief that certain efficient computational tasks are required to use additional memory. In this
context, it can be shown that certain tasks like linear programming or maximum flow (formalized
appropriately) are P-complete (under log-space reductions) in the sense that if any of these tasks
could be performed in logspace, then L would equal P. This explains why we don’t have in-place
algorithms for these tasks.

Some of the simplest efficient algorithms hat use external memory are depth first search and breadth
first search. These algorithms solve the decision problem graph connectivity:

connectivity: Given an graph, is it connected?

Is the use of external memory necessary when we solve connectivity? As we will see soon, in
the case of directed graphs, this question essentially asks if L is different from NL. What about
undirected graphs? In 2005 Omer Reingold showed that undirected graph connectivity can be
solved in logarithmic space! So external memory is not necessary to tell if a graph is connected or
not. Since L ⊆ P, Reingold’s algorithm runs in polynomial time – but the running time could be
a very large polynomial in the graph size.

Before we turn to these fascinating questions, let us take a detour into non-uniform models of small
space computations. Just like circuits helped us say something about the limitations of polynomial-
time Turing Machines, we now look into branching programs – the “hardware” model of small space
algorithms.

1Actually, while this should be clear for Random Access Machines, it is not necessarily true for Turing Machines,
because a TM can make a pass over its input left-to-right without ever storing any index. But even if we want to
make two independent passes (i.e. keep two counters) on a TM with o(log n) space we run into trouble.



4

2 Branching programs

A branching program is a device with some small number of states. Before it starts its computation,
the device decides how it is going to process its input: Maybe first it looks at the input bit x5, then
x2, x7, x2 again, and so on. At each time step, it updates its state as a function of its current state
and the input bit it was looking at. However, the device can use different update rules at different
points in time.

Definition 2. A branching program on n inputs of width w and length t consists of a sequence
of input positions k0, . . . , kt−1 ∈ {1, . . . , n} and functions f0, . . . , ft−1 : {0, . . . , w − 1} × {0, 1} →
{0, . . . , w − 1}.

On input x1, . . . , xn, the branching program computes as follows. Initially, the program is in state
s0 = 0. In time step i, the state of the branching program is updated via the rule si+1 = fi(si, xki

).
At time t, the branching program accepts if it is in state 0, and rejects if it is in any of the other
states.

When w = 2k we can think of the branching program as this. The program has a fixed set of
registers R1, . . . , Rk, initialized to 0, and a program consisting of t “instructions” g0, . . . , gt−1.
Each instruction is of the type “look up some input bit and update the registers”. In the end the
program accepts (say) if R1 = · · · = Rk = 0.

Theorem 3. If L ∈ L, then L can be computed by a family of branching programs of polynomial
length and polynomial width.

Proof sketch. Let M be a logarithimic space Turing Machine for L. We will first argue that we can
make the motion of the head of M ’s input length completely independent of the input (and only
dependent on the input length). The idea is to reprogram the Turing Machine so that its input
tape head always makes a move to the right at each time step, until it reaches the end of the tape,
and then comes back straight to the beginning. To do this, anytime the head wants to move left,
we make a copy of the head position on the work tape, and keep moving the input head to the
right until it reaches the end, go back to the beginning, and move it to the left until right before
the correct place is reached. We omit the technical details.

Now think of the k = O(log n) cells of the tape as registers in the branching program. Then
each step of M specifies how the register contents are updated as a function of the input bit xki

read at time i. This process is modeled by a branching program of width 2O(log n) = nO(1). Since
every logarithmic space TM runs in polynomial time, the branching program will also have length
polynomial in n.

What about branching program families of smaller width? A branching program whose length is
exponential in n can compute all functions in n variables, even if its width is 3. But if we restrict
the length to be polynomial in n, it is not clear how much the branching programs can do.

How do branching programs compare with circuits? Polynomial-length branching programs with
a constant number of states can be simulated in NC1. For a branching program B of length t and



5

width w, we show how to build a fanin 2 circuit of depth O(log w log t). In fact this circuit will
compute a function C(s, t, x) where s and t are states of B, x ∈ {0, 1}n is an input, and

C(s, t, x) =

{
1, if on input x, B goes from state s to state t

0, otherwise.

To construct C, we split B in two parts B1 and B2 of equal length. Suppose we have already
constructed circuits C1 and C2 for them. Then we write

C(s, t, x) =
w∨

u=1

C1(s, u, x) ∧ C2(u, t, x)

which describes the fact that if on input x, B goes from state s to state t, then it must do so thru
some state w in the middle. The depth of C is then O(log w) bigger than the depths of C1 and C2.
Since C1 and C2 describe branching programs of half the length, we can continue the construction
recursively and obtain a circuit of depth O((log w)(log t)) for B. (In the base case t = 1, C depends
on only one bit of x so it can be computed by a circuit of depth O(log w) also.)

So constant width branching programs can be simulated in NC1. Can we come up with examples
of functions that are hard for them? The XOR function, which was hard for AC0, can be computed
by width 2 branching programs of length n. What about majority?

3 Barrington’s theorem

In the 1980s it was widely conjectured that constant-width, polynomial size branching programs
cannot compute the majority function. People also believed that the computational power of
branching programs should increase as the width gets larger: For instance, polynomial-size branch-
ing program families of width 20 are more powerful than those of width 10. In a surprising turn in
1986, David Barrington showed that these beliefs are wrong!

Theorem 4. If f has a depth d formula, then it has a branching program of width 5 and size 2O(d).

By this theorem logarithmic depth fan-in 2 circuit families, polynomial-size formulas, and polynomial-
size branching program families of any constant width above 5 are all equivalent models of compu-
tation.

We will prove Barrington’s theorem but with the constant 5 replaced by 8. Recall that a branching
program of width 8 can be viewed as a machine with 3 registers taking values in {0, 1}. Let’s call
the register contents of these 3 registers A, B, and C.

Assume f has a formula of depth d. We begin by changing the ∨ and ∧ gates in the formula
into × and + gates. These gates compute multiplication and addition over the binary field F2,
respectively. We can perform the gate replacement using the following rules:

x ∧ y = x× y x ∨ y = 1 + (1 + x)× (1 + y).



6

We obtain a formula for f with × and ⊕ gates and depth O(d). This formula has some extra leaves
that are labeled by the constant 1.

We now design a branching program for the formula f . We will prove the following statement
by induction on the depth d′ of f : There is a branching program of width 8 and size 4d′

so that
when the branching program starts with register contents A, B, and C, it ends its computation
with register contents A, B, and C + f(x1, . . . , xn)B. The theorem then follows by initializing the
registers to A = 0, B = 1, and C = 0.

We prove the inductive statement by looking at the top gate of f . If this gate is the constant 1 or
a literal xi or xi, then there f can be computed by a branching program of length 1. If f = f1 +f2,
then we obtain a linear length branching program for g by combining the programs P1 for f1 and
P2 for f2 like this:

(A, B,C) P1−→ (A, B,C + f1B) P2−→ (A, B, C + (f1 + f2)B)

By inductive hypothesis, each of P1 and P2 has length 4d′−1, so f has length 2 · 4d−1 ≤ 4d. If
f = f1 × f2, we combine P1 and P2 again as follows:

(A, B,C) P1−→ (A + f1B, B, C) P2−→ (A + f1B, B, C + f2(A + f1B))
P1−→ (A, B,C + f2A + f1f2B) P2−→ (A, B,C + f1f2B).

In each of the steps, the program P1 or P2 is applied but the registers are permuted in some order.
Using the inductive hypothesis, f has length 4 · 4d′−1 = 4d′

, concluding the inductive argument.

4 Nondeterministic logarithmic space

In contrast to deterministic polynomial-time computations, nondeterministic polynomial-time com-
putations are not believed to be realistic. How much power does nondeterminism add to logarithmic
space? We will see that every nondeterministic logarithmic space TM can be simulated in deter-
ministic polynomial time, so NL in fact describes a realistic model of computation.

What about the relationship between NL and L? While there appears to be overwhelming evidence
that P 6= NP, the “answer” to the L versus NL question seems much less clear. We will see that many
of the difficulties we encounter in simulating nondeterministic time efficiently go away when we are
dealing with nondeterministic space. Despite this we do not know how to eliminate nondeterminism
altogether from space-efficient computations.

Just like SAT embodies the difficulty of NP, the following problem plays the same role for NL:

PATH: Given an directed graph G and two vertices s and t in G, is there a path from s to t in G?

Sometimes it is convenient to work with the following version:

CONN: Given an directed graph G, is it strongly connected (i.e. is there a directed path from
every node to every other node)?



7

We say a decision problem A logspace reduces to decision problem B if there is a logarithimic space
TM that maps instances x for A into instances y for B so that x ∈ A if and only if y ∈ B. We say
L is NL-complete (under logspace reductions) if every A in NL reduces to L.

Theorem 5. PATH and CONN are NL-complete.

Since graph connectivity can be checked in polynomial time, and logspace reductions run in poly-
nomial time, it immediately follows that NL ⊆ P.

Proof. To see that PATH is in NL we need to give a nondeterministic logarithmic space algorithm
that, on input a graph G, checks that it is possible to get from vertex s to vertex t. The non-
deterministic tape describes a path from x to y in G, that is a sequence of vertices v0, v1, . . . , vk

where v0 = s, vk = t, and vi connects to vi+1. The following NTM then checks that the graph is
connected by going over all such vertices and checking they are all valid:

On input a graph G and vertices s and t:
Guess a vertex v (i.e., read it from the nondeterminism tape).
If v 6= s, reject.
For i := 1 to (at most) n:

Guess a vertex v′.
If (v, v′) is not an edge in G, reject.
If v′ = t, accept.
Otherwise, set v := v′.

If i reached the value n, reject.

This NTM uses three counters: v, w, i, each of which described a number between 1 and n. So it
can be implemented in logspace. We can get a logarithmic space NTM for CONN by running the
same algorithm for all pairs of vertices (s, t).

We now argue that every L in NL reduces to PATH. Let N be a logarithmic space NTM for L.
Given an input x for N we need to construct a triple (G, s, t) so that N accepts x if and only if
there is a path from s to t in G. The vertices of G will be the configurations of N , and there is an
edge (x, y) if the transition from x to y can be performed in a single computation step. Remember
that this can be decided by looking at the “3× 2 window” centered around the work tape of x and
the corresponding work tape of y and checking that it describes a valid change of configuration (for
some choice of nondeterminism). We also need to check that the head position of the input tape
is updated accordingly. All of these checks can be done in logarithmic space. We set s to be the
vertex that describes the starting configuration of N , and t describes the accepting configuration
of N (since we required that when halting the work tape is left with a single value on it, and the
head positions of both tapes return to the beginning, this configuration is unique).

This construction ensures that N accepts x if and only if there is a path from s to t in G, so L
reduces to PATH.

To finish the proof we show that PATH reduces to CONN: Given a triple (G, s, t), we construct the
graph H by taking G and adding edges from every vertex into s, and edges from t to every vertex.



8

It follows easily that if G has a path from s to t, then H is connected, and if G has no path from
s to t, then neither does H, so it is not connected.

So nondeterministic logarithmic space can be simulated in (deterministic) polynomial time. What
about deterministic space simulations? When we tried to simulate nondeterministic time determin-
istically, we had to pay with an exponential blowup; in contrast, nondeterministic space is easy to
simulate much more efficiently.

Theorem 6 (Savitch’s theorem). Every NL problem can be decided by a deterministic TM that
runs in space O((log n)2).

Proof. It is sufficient to show that PATH can be decided in space O((log n)2). In fact we will
design a TM that decides the more general question whether there is a path from s to t of length
at most k in G. The machine will use space O((log k)(log n)), so when n = k we obtain the desired
consequence. Assume that k is a power of 2 and the vertex set of G is {1, . . . , n}.

On input a graph G, vertices s, t, and a number k:
If s = t or there is an edge from s to t in G, accept.
Allocate log n bits of work tape for a vertex index v.
For v := 1 to n:

Recursively test if there is a path from s to v of length ≤ k/2.
Recursively test if there is a path from v to t of length ≤ k/2.
If either path doesn’t exist, try the next v.
Otherwise, accept.

Reject.

It is easy to see the algorithm is correct: There is a path from s to t of length at most k if and
only if there are paths of length at most k/2 from s to v and from v to t for some v. What about
the space complexity? Each level of recursion uses up O(log n) bits of work tape. Moreover, when
running the recursion we need to store the positions of the work tape and input tape heads, which
incur another O(log n) bits. Since the recursion runs for O(log k) levels, we obtain the desired space
complexity.

Therefore nondeterministic computations can be simulated deterministically (i) in polynomial time
and (ii) in space O((log n)2). However we do not know if there is a single simulation that runs both
in polynomial time and O((log n)2) space.

5 The Immerman-Szelepcsényi theorem

Finally, we show perhaps the most surprising way in which nondeterministic time and space appear
very different. Recall our discussion of coNP: While we can easily verify that, say, a CNF formula
has a satisfying assignment, we do not know in general how to verify there are no satisfying
assignments. So it appears that NP 6= coNP. In contrast, we will show that NL = coNL. So
there is no essential difference between space-efficient proofs and refutations!



9

Theorem 7. NL = coNL.

To prove this theorem, it is sufficient to show that CONN ∈ coNL, or equivalently, CONN ∈ NL.
We design a logarithmic space NTM N that, on input a graph G, accepts if and only if G is not
connected. It will be convenient to think of the (read-only) nondeterminism tape of N as containing
a certificate, whose purpose it is to convince us that G is not connected.

Assume the vertices of G are {1, . . . , n}. To certify that G is not connected, it is equivalent to
check for some vertex v, the number c of vertices reachable from v is strictly smaller than n. The
NTM will compute this number c and accept iff it is smaller than n.

What do we mean when we say that NTM N compute some number c? What if different numbers
are computed on different computation paths? We won’t give a formal definition, but what we
mean is that all computation paths of N are either rejecting or contain the same number c on some
specified portion of the work tape.

As an exercise, suppose that I wanted to convince you the number of vertices reachable from v is
at least c. Our certificate for this task will consist of a list of c distinct vertices z1, . . . , zc, ordered
lexicographically, together with the list of vertices on some path (of length at most n) from v to zi

for each i. More precisely, the certificate is provided as z1, p1, . . . , zc, pc where pi is the path from
v to zi. To verify the validity of the certificate, we need to check that there are at most c pairs in
the list, zi < zi+1 for every i, and pi is indeed a path from v to zi in G. All these checks can be
carried out in logarithmic space (with some “temporary variables” to remember the last values of
i and zi and the last vertex visited on the path pi).

However, what we are really interested in knowing is that the number of vertices reachable from v
is at most n − 1, not at least something. This appears like a very different task! But it turns out
that the two are related.

The trick is to compute the number c in stages. In stage k, the NTM will compute the number
ck of vertices reachable from v in at most k steps. Notice that c = cn. So the certificate for c will
contain the numbers c0, c1, . . . , cn, interspersed with some information that will convince us these
values are indeed correct.

Initially, we have that c0 = 1. Now assume that NTM N has already managed to compute ck−1.
We will show how it can then compute ck.

To certify the value of ck, we need two things: A lower bound that convinces us the number of
vertices reachable from v in ≤ k steps is at least ck, and an upper bound that convinces us this
number is at most ck. We already saw how we can certify a lower bound: The only difference here
is that we need to check the length of all the paths pi is at most k, and this can be done easily in
logarithmic space. So we are left with the upper bound.

Given the value ck−1, the certificate will contain a list of all vertices w in lexicographic order that
are at distance at most k − 1 from v, accompanied by a path that certifies the distance is at most
k−1. By looking at the neighbors of each w, we can determine – and count – all the vertices u that
are at distance at most k from v. However, this may not give us the correct value of ck, because
some of the vertices u may be counted multiple times! But when we look at u we can add a portion
of the certificate that convinces us u has been visited before: If u was visited before, then there



10

must be some w′ < w such that w′ connects to u and w′ is at distance at most k − 1 from v. So
for each potential u, the certificate will contain a bit specifying if u is visited for the first time in
round k, and if not, the identity of the vertex w′ that certifies u was visited before (together with
a certificate that w′ is at distance at most k − 1 from v).

Putting all these observations together, we obtain the following nondeterministic logarithmic space
TM N for CONN. This TM uses the nondeterministic subroutine path(G, v,w, k), which accepts
iff there is a path from v to w in G of length at most k.

Algorithm N : On input a graph G with vertex set {1, . . . , n}:
Guess a vertex v. (Supposedly, some vertex is unreachable from v).
Let c := 1. (c will contain the value ck−1.)
For k := 1 to n:

Guess c′ ∈ {1, . . . , n}. (c′ is supposed to equal ck.)
Lower bound certificate for c′:
For i := 1 to c′:

Guess a vertex z lexicographically greater than the previous one, if one exists.
(Initially, any z is allowed.)
If path(G, v, z, k) rejects, reject.

Upper bound certificate for c′:
Set t := 0. (t will be an upper bound on c′.)
For i := 1 to c:

Guess a vertex w lexicographically greater than the previous one, if one exists.
(Initially, any w is allowed.)
If path(G, v,w, k − 1) rejects, reject.
For every u such that (w, u) is an edge in G:

Guess if u was visited before (in the loop for i).
If yes, guess a vertex w′ < w such that (w′, u) is an edge in G.

If path(G, v,w′, k − 1) rejects, reject.
If not, set t := t + 1.

If t > c′, reject.
Set c := c′.

If c < n, accept.


