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Our objective of study today is the random walk algorithm for deciding if two vertices in an
undirected graph are connected by a path. Last time we gave a heuristic argument that if G is a
graph on n vertices and there is a path from s to t, the random walk algorithm will detect that t
is reachable from s in at most 2n3 steps with probability 1/2.

Today we give a rigorous analysis of the random walk algorithm (which will give a weaker but
still polynomial bound on the length of the random walk). We then look at ways to remove the
randomness from this algorithm and see how this can be achieved using some additional tools
that can be obtained via the methods we’ll see in the analysis. In the process we will see how
to construct expander graphs, an important combinatorial tool that is useful in many scenarios in
computer science.

As last time, we will assume that the graph G is connected, is d-regular, and has a loop around
every vertex.

1 Adjacency matrix and eigenvalues

We now turn to some algebraic tools that will allow us to carry out a rigorous analysis of the
random walk process. At this point it will be helpful to slightly change our perspective and look
at the following question: If the particle starts at s, how long will it take the particle to reach not
a specific s′, but a random vertex in the graph?

To answer this question, it will be helpful to represent the random walk by a sequence of probability
distributions p0,p1, . . . on the vertices of G, with the following interpretation: At each step t, pt(u)
is the probability of the particle ending up at vertex u after t steps of the walk. Initially, we have
p0 assign probability 1 to vertex s, and probability 0 to all the other vertices. The distribution
pt+1 can be calculated from pt via the formula

pt+1(u) =
∑

v:(v, u) is an edge

1

d
· pt(v). (1)

We are now interested in the following question: When t gets large, how close does the distribution
pt get to the uniform distribution u on the set of vertices? To answer this question, we need some
way of measuring how “close” two distributions are. In our setting the most convenient measure is
the `2 norm. The `2 norm of a vector v is the quantity

‖v‖ =
(∑

i

v2
i

)1/2

and the `2 distance between two vectors v and v′ is the `2 norm of v − v′. We will think of
probability distributions as vectors in Rn (with one entry for each vertex in the graph), and we will
say that two distributions p and p′ are ε-close (in `2 distance) if ‖p− p′‖ ≤ ε.

1
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The (normalized) adjacency matrix of G is an n× n matrix A defined as follows:

Au,v =
number of edges between u and v in G

d

This matrix is symmetric and the entries in each row add up to one. Using A, we can write
equation 1 in matrix form as pt+1 = ptA (it is customary to represent pt as row vectors) and so
we immediately obtain that pt = p0A

t.

It turns out that the eigenvalues and eigenvectors of A play a significant role in determining the
behavior of random walks on G. Recall that an eigenvalue-eigenvector pair is a complex number
λ and a vector v such that vA = λv. It is a basic theorem in linear algebra that symmetric
matrices have an orthonormal basis of eigenvectors with real eigenvalues. Let’s denote these pairs
by (λ1,v1), . . . , (λn,vn) where λ1 ≥ λ2 ≥ ... ≥ λn. (Some of the λi may be negative.)

What is the meaning of this? Initially the position of our particle is determined by the distribution
p0. Since the vectors v1, . . . ,vn form an orthonormal basis we can decompose p0 in the form

p0 = α1v1 + · · ·+ αnvn

where αi = 〈p0,vi〉 and α2
1 + · · ·+ α2

n = 1.

After one step of the random walk, the distribution becomes

p1 = p0A = α1v1A+ · · ·+ αnvnA = α1λ1v1 + · · ·+ αnλnvn

and after t steps
pt = p0At = α1λ

t
1v1 + · · ·+ αnλ

t
nvn. (2)

Let’s think of what happens when t becomes large. We will assume the values αi are nonzero
since the initial position of the particle can be arbitrary.1 Eventually the right hand side of the
expression will be dominated by the term in which λi has largest absolute value; this is either |λ1|
or |λn|. This absolute value cannot exceed 1, because pt would then become very large, but its
norm is bounded since it is a probability distribution. Similarly, the absolute value cannot be less
than 1 because then pt would become very small when t gets large.

Therefore, it must be the case that λ1 = 1, and

max{|λi| : 2 ≤ i ≤ n} = max(λ2,−λn) ≤ 1.

The quantity on the left side is denoted by λ = λ(G) and plays a very important role because of
the following. First, note that uA = λ1u, so the eigenvector v1 associated to λ1 = 1 equals

√
n ·u.

Now from (2) we have that

‖pt − α1v1‖2 = α2
2λ

2t
2 + · · ·+ α2

nλ
2t
n ≤ λ2t.

The left hand side has a natural interpretation. Recall that α1 = 〈p0,v1〉 = 1/
√
n, so α1v1 equals

the uniform distribution u. Thus λt measures how close pt gets to the uniform distribution after t
steps of the walk: ‖pt−u‖ ≤ λt. Another way of saying this is that λ determines the rate at which
pt converges to the uniform distribution: The smaller λ is, the faster we will get to a uniformly
random vertex.

1This is not quite right: The correct way to say it is that for every index i there exists an initial position for the
particle that makes αi 6= 0.
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2 Bounding the eigenvalue gap

We now introduce some tools that will allow us to upper bound the value λ = max(λ2,−λn). Let
us begin with λn.

Claim 1. Suppose G is a d-regular graph with a loop around every vertex. Then −λn ≤ 1− 2/d.

Proof. If G is d-regular with a loop around every vertex, we can write the adjacency matrix A of
G as

A =
d− 1

d
A′ +

1

d
I

where A′ is the adjacency matrix of the graph obtained by removing the loops from G, and I is
the identity matrix. Notice that the eigenvalues of A and A′ are then related by the formula

λi = λ′i ·
d− 1

d
+

1

d

for 1 ≤ i ≤ n, so in particular, λn ≥ (−1) · (d− 1)/d+ 1/d ≥ −1 + 2/d.

2.1 Rayleigh quotients

To bound λ2, it will be useful to describe this eigenvalue in an alternative way. To see how this
can be done, we diagonalize the matrix A as STΛS, where S is an orthonormal matrix whose rows
are the eigenvectors v1, . . . ,vn, and Λ is a diagonal matrix consisting of the entries λ1, λ2, . . . , λn
in that order. (Recall that when S is orthonormal, ST = S−1.) Then the eigenvectors of A and
those of Λ are related by an orthonormal change of basis.

Let’s now look at the eigenvalues of Λ, which are its diagonal entries. One way to describe the first
eigenvalue λ1 is to look at all possible vectors v of norm one, and take the one that maximizes the
expression vΛvT. Clearly this quantity is maximized by the vector v = e1 = (1, 0, . . . , 0), which
yields the value λ1. But now notice that

λ1 = max‖v‖=1 vΛvT = max‖v‖=1 v(SAST)vT = max‖v‖=1(vS)A(vS)T = max‖v‖=1 vAvT

because as v cycles over all vectors of norm one, so does vS. Now notice that

vAvT =
n∑

u,w=1

Auwv(u)v(w) =
∑

(u,w) is an edge

1

d
v(u)v(w) = nE(u,w)[v(u)v(w)]

where E(u,w)[·] denotes expectation taken over a random directed edge (u,w) in G. This gives the
following formula for λ1:

λ1 = n ·max‖v‖=1 E(u,w)[v(u)v(w)].

What about λ2? Again, we look at Λ, but now instead of maximizing over all vectors, we only
maximize over those that are orthogonal to the first vector e1:

λ2 = max‖v‖=1,v⊥e1 vΛvT = max‖v‖=1,v⊥e1(vS)A(vS)T.
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Now notice that as v cycles over all vectors of norm 1 that are perpendicular to e1, vS will cycle
over all vectors of norm 1 that are perpendicular to e1S = v1, which is parallel to u. So we obtain
the following expression for λ2:

λ2 = max‖v‖=1,v⊥u vAvT = nmax‖v‖=1,v⊥u E(u,w)[v(u)v(w)].

Since our goal is to bound the value λ2 away from 1, it will be convenient to look at the expression
1− λ2. Using the above formula and simplifying a bit, we obtain

1− λ2 =
n

2
min‖v‖=1,v⊥u E(u,w)[(v(u)− v(w))2] (3)

=
1

2
minv⊥u

E(u,w)[(v(u)− v(w))2]

Eu[v(u)2]
. (4)

2.2 Bounds on the second eigenvalue

Looking at (3) we immediately see that 1 − λ2 ≥ 0. Recall that our goal is to bound this value
from below, so as a first step let’s ask if 1− λ2 can ever equal zero. Notice that if 1− λ2 = 0, then
there must exist a v ⊥ u such that v(u) = v(w) for every edge (u,w). Since G is connected, this
implies that v is a constant vector, namely it is a multiple of u. But since v ⊥ u, it follows that
v = 0, which is not allowed. So if G is connected, it must be that λ2 < 1.

Our objective will now be to quantify this reasoning. In some sense, we will try to say that the
better connected G is, the farther λ2 will be from 1. To get a better understanding of 1 − λ2, it
will be easier to start with an upper bound instead of a lower bound. To do this we define the edge
expansion h(G) of a graph G by the formula

h(G) = minS : |S|≤n/2 Pr(u,w)[w 6∈ S | u ∈ S]

where S ranges over all subsets of vertices of G of size at most n/2. This value tells us how likely
we are to get out of a set S after one step of the random walk, if we start at a random vertex of S.

Theorem 2. 1− λ2 ≤ 2h(G).

Proof. Let S be any set of vertices of size at most n/2 and set

v(u) =

{
|S|/n, if u ∈ S
−|S|/n, if u 6∈ S.

Notice that v ⊥ u, and that v(u) − v(w) is 1 exactly when (u,w) exactly one of u and w is in S
and the other is in S, and 0 otherwise. In the first case we will say (u,w) crosses (S, S). Plugging
into (4) we obtain

1− λ2 ≤
1

2

Pr(u,w)[(u,w) crosses (S, S)]

Eu[v(u)2]
.

Now notice that Pr(u,w)[(u,w) crosses (S, S)] = 2 Pr[w 6∈ S | u ∈ S](|S|/n) and

Eu[v(u)]2 =
1

n

[
|S| ·

(
|S|
n

)2
+ |S| ·

(
|S|
n

)2]
=
|S||S|
n2

≥ |S|/2n.
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This theorem tells us that if 1− λ2 is large, then the edge expansion is large. We will now see that
the opposite relation holds as well: If the edge expansion is large, then so is 1− λ2.

Theorem 3 (Cheeger’s inequality). 1− λ2 ≥ h(G)2/2.

We now prove this theorem. Fix a v that minimizes (3). We may assume at most half (but at least
one) of the entries of v are nonnegative, otherwise we can use −v. Without loss of generality, let
us assume that v(1) ≥ v(2) ≥ · · · ≥ v(n). The proof will show that if Pr(u,w)[w ≥ i+ 1 | u ∈≤ i] is
large for all i, then λ2 must be large.

For somewhat obscure technical reasons, the negative entries of v are difficult to deal with, so we
start by removing them.

Step 1: Remove the negative entries of v. Let v+ be the vector v+(u) = max(v(u), 0). The
first t entries of there vector are nonzero, where 1 ≤ t ≤ n/2. We begin by showing that

1− λ2 ≥
1

2
·

E(u,w)[(v
+(u)− v+(w))2]

Eu[v+(u)2]
. (5)

To prove this we write

E(u,w)[(v
+(u)− v+(w))2] = 2 Eu[v+(u)2]− 2 E(u,w)[v

+(u)v+(w)].

By the definition of λ2, for every u we have E(u,w)[v(w) | u] = λ2v(u). Since v+(w) ≥ v+(u), it
follows that E(u,w)[v

+(w) | u] ≥ λ2v(u), and since all v+(w) are nonnegative, we get E(u,w)[v
+(w) |

u] ≥ λ2v
+(u). Averaging over u, it follows that

E(u,w)[v
+(u)v+(w)] ≥ λ2 Eu[v+(u)2]

so E(u,w)[(v
+(u)− v+(w))2] ≤ (2− 2λ2) Eu[v+(u)2], proving (5).

Step 2: Cauchy-Schwarz. We now apply the Cauchy-Schwarz inequality to lower bound the
numerator of (5):

E(u,w)[(v
+(u)− v+(w))2] E(u,w)[(v

+(u) + v+(w))2] ≥ E(u,w)

[
|v+(u)2 − v+(w)2|

]
.

For the second term we have the upper bound:

E(u,w)[(v
+(u) + v+(w))2] ≤ E(u,w)[2(v+(u)2 + v+(w)2)] = 2 Eu[v+(u)2],

so substituting in (5) we obtain:

√
1− λ2 ≥

1

2
·

E(u,w)

[
|v+(u)2 − v+(w)2|

]
Eu[v+(u)2]

. (6)



6

Step 3: Change the order of summation. Order the vertices by decreasing values of v+,
breaking ties arbitrarily. Direct the edges of the graph in a way compatible with this ordering and
let (u < w) denote the corresponding distribution on directed edges. Then

E(u,w)

[
|v+(u)2 − v+(w)2|

]
= E(u<w)[v

+(u)2 − v+(w)2]

= E(u<w)

[∑u−1

i=w
v+(i)2 − v+(i+ 1)2

]
=

t∑
i=1

fi ·
(
v+(i)2 − v+(i+ 1)2

)
Where fi = Pr(u<w)[u ≤ i and w ≥ i+ 1]. Therefore fi = (i/n) Pr[w ≥ i+ 1 | u ≤ i]. Finally,

t∑
i=1

fi ·
(
v+(i)2 − v+(i+ 1)2

)
=

t∑
i=1

Pr[w ≥ i+ 1 | u ≤ i] · i
(
v+(i)2 − v+(i+ 1)2

)
/n

≥ mini∈{1,...,t} Pr[w ≥ i+ 1 | u ≤ i] ·
t∑

i=1

i
(
v+(i)2 − v+(i+ 1)2

)
/n

Now notice that the summation equals (v+(1)2+v+(2)2+· · ·+v+(t)2−tv+(t+1)2)/n = Eu[v+(u)]2,
so putting everything in (6) we get:√

1− λ2 ≥
1

2
·mini∈{1,...,t} Pr[w ≥ i+ 1 | u ≤ i] ≥ h(G)

2
.

3 Analysis of the random walk algorithm

Using Theorem 3 it is now easy to analyze the random walk algorithm. Since G is connected, for
every set S of size at most n/2 there must be at least one edge going out of S, so h(G) ≥ 1/dn, and we
get that λ2 ≤ 1−1/2(dn)2. Since every vertex has a loop, λn ≥ −1+2/d ≥ −1+1/2(dn)2. Therefore
after t steps of the random walk, we have that ‖pt−u‖ ≤ (1−1/2(dn)2)t. For t = log(4n2)/2(dn)2

we get that ‖pt − u‖ ≤ 1/4n2, so for every vertex v, (pt(v)− u(v))2 ≤ 1/4n2, and pt(v) ≥ 1/2n.

To recapitulate, after walking for t steps, for every vertex v, we have probability at least 1/2n of
reaching it at time t. To reach the vertex s′, consider what happens when we perform 4n such
consecutive t step walks. Since in each walk we reach s′ independently with probability at least
1/2n, the probability that we fail to reach s′ after all these walks is at most (1 − 1/2n)4n ≤ 1/2.
Therefore, after a total of O(d2n3 log n) steps, we have reached s′ with probability at least 1/2.

4 Highly connected graphs

In the beginning we asked the following question: Given a particle that sits at vertex s in the
graph, how many steps of a random walk does it take for the particle to reach a random vertex in
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the graph? We showed that for a d-regular, n vertex graph, we can always reach a random vertex
after polynomially many (in n and d) steps.

However, in certain cases the number of steps can be quite large – as large as dn2. Let us now
reverse the question and ask the following: How can we design a d-regular graph G (think of d as
very small compared to n) such that starting from any vertex s, we can reach a random vertex as
soon as possible?

It seems a good idea to make as many vertices of G reachable using short walks out of s. This
suggests that G should look like a tree rooted at s.

If we start as s, very quickly (after about logd n steps) we will find the particle near the leaves of
the tree. However, the particle is unlikely to stick at any particular leaf because there is only one
path leading to it. A random walk on the tree favors the interior vertices, so the vertex at which
the particle ends up won’t look random.

In some sense, this is a bit unfair because the leaves have degree one, and the graph is not d-regular.
We can ”connect up” the leaves in some way so as to make the graph be d-regular. Once we do
this, it seems plausible that after enough steps the vertex where the particle sits will indeed be
uniform (and this is in fact the case), but also that a random vertex is reachable from s rather
quickly (because in a tree, paths starting from s ”expand out” very quickly).

However, in the end there is nothing special about s, and what we want in some way is that if we
choose any vertex as the root, from the perspective of that vertex the graph looks a lot like a tree.

To be a bit more quantitative, if we start at s, even in the ideal case of a tree, we need just Ω(log n)
steps out of s to ”cover” all the possible vertices in G. So we cannot hope to end up at a random
vertex of G before we have completed at least Ω(log n) steps. Can we do so in O(log n) steps no
matter at which vertex s we started?

Recall that after t steps of the walk, our distance to the uniform distribution is upper bounded by
the value λt, where λ = max(λ2,−λn). This suggests that we want to design a graph whose value
λ is as small as possible.

5 Expander graphs

The above discussion indicates that λ can in fact never get too small. To get a lower bound on λ,
notice that after t steps of the walk, the potential number of vertices that could have been reached
from s never exceeds dt+1; there are at most this many vertices at distance ≤ t from s. So even
when t = logd n− 2, less than half of the vertices of the random walk are reachable. Therefore the
distribution pt must assign probability zero to the other half vertices, and

λt ≥ ‖pt − u‖ ≥
(
n/2 · (0− 1/n)2

)1/2
= 1/

√
2n.

It follows that λ = Ω(1/
√
d). A more precise analysis shows that for every graph, λ ≥ 2/

√
d−on(1),

where on(1) is quantity that converges to zero as n gets large. However, there exist graphs such
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that λ = 2/
√
d for infinitely many values of n. Such graphs are called Ramanujan graphs.2

For our purposes, it will be enough to consider graphs for which as n grows, λ stays bounded away
from one. If this is the case, then after only t = Θ(log n) steps of the random walk, we have that

‖pt − u‖ ≤ λΘ(logn) = n−Θ(1) (7)

so pt gets very close to the uniform distribution, and in fact all vertices of G are reached with
probability Θ(1/n).

Definition 4. A family of graphs {Gn}, where Gn has n vertices and is d-regular, is called an
expander family if there is a constant ε > 0 such that λ(Gn) ≤ 1− ε for every sufficiently large n.

For example, the following family of 4-regular graphs is an expander family: For every prime
number p, think of the vertices of Gp as elements of the finite field Fp. For every x ∈ Fp, the edges
going out of x are (x, x− 1), (x, x), (x, x+ 1), (x, x−1) where all operations are over Fp (and we set
0−1 = 0).

Another example comes from random graphs: Suppose n is even and we construct a graph by
taking a union of d random matchings on its vertices. It can be shown that with high probability
the resulting family of graphs is expanding (and in fact has λ close to 2/

√
d).

2Ramanujan graphs are known to exist for every n such that n+ 1 is a power of a prime larger than two.


