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A function is monotone if increasing the value of an input can never cause the value of an output
to decrease. More formally, f : {0, 1}n → {0, 1} is monotone if whenever xi ≤ yi for all i, it is also
true that f(x) ≤ f(y).

An example is the majority function. Another example is graph connectivity: Given an undirected
graph G represented by its adjacency matrix, is it connected? In this example increasing the value
of an input means adding an edge to the graph and this can never cause the graph to disconnect.

An AND/OR circuit is monotone if it does not use any of its negated literals. Any monotone
function can be expressed as an OR of ANDs of positive literals and can therefore be computed by
a monotone DNF. In this lecture we will be interested in the size of the smallest monotone circuit
for a given (monotone) function. The circuit for majority sketched in Lecture 3 was monotone, so
MAJORITY on n bits has a monotone circuit of size n log n.

Graph connectivity also has a monotone circuit of size polynomial in the number of vertices. One
way to construct this circuit is by emulating the standard breadth first search algorithm for con-
nected components. In stage i, the circuit marks those vertices at distance at most i from some
starting vertex. A vertex in stage i+ 1 should be marked if and only if it was marked in stage i or
it is connected to a stage i vertex by an edge. Neither of these steps requires the use of a negation.
The graph is connected if all vertices in stage n are marked, which does not require a negation.

1 Monotone circuits and slice functions

The relation between monotone and non-monotone circuit complexity is subtle. To begin with, we
will show a positive connection: Every non-monotone circuit can be simulated, in some sense, but
a small family of monotone circuits of similar size, each one computing one “slice” of the same
function.

A slice function is a function whose domain consists of all binary strings of length n and Hamming
weight w for some n and w. We say a slice function f is computed by circuit C with n inputs if
C agrees with f on all inputs of Hamming weight w (but may output arbitrary values on other
inputs).

Claim 1. If a slice function can be computed by an AND/OR circuit of size s and depth d then it
can be computed by a monotone AND/OR/MAJORITY circuit of size s + O(n) and depth d + 1
with all majority gates in the bottom layer.

Proof. It is enough to show that for all i the negative literal xi can be computed as aMAJORITY of
positive literals. Indeed, xi takes value 1 if and only if at least w of the literals x1, . . . , xi−1, xi+1, . . . , xn
take value 1; this forces xi to take value 0. This computation can be performed by a MAJORITY
gate after replacing some inputs by constants.

From this claim we can conclude that for every function f : {0, 1}n → {0, 1} that has a size s
AND/OR circuit there exist AND/OR monotone circuits M0, . . . ,Mn of size s + O(n2 log n) each
such that Mi computes the i-th slice of f .
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2 Cliques are hard for monotone circuits

The main result in this lecture is that the CLIQUEk function on n-vertex graphs requires monotone

circuits of size nΩ(
√
k) (when k ≤ n1/4), regardless of their depth. This is an explicit function that

requires monotone circuits of size exponential in some root of its input length.

A k-clique in an n-vertex graph is a complete subgraph on k of its vertices. The CLIQUEk function
takes an n-vertex graph as its input and indicates the existence of a k-clique in it, namely

CLIQUEk(G) =

{
1, if G contains a k-clique

0, if not.

The graphG is specified by its adjacency matrix, or equivalently by an
(
n
2

)
-bit string x = (xij), i < j,

where xij indicates the presence of an edge between vertices i and j.

The function CLIQUEk can be computed by a monotone DNF of size
(
n
k

)
. This DNF has a term

for each subset S of vertices. The term accepts if all possible
(
k
2

)
edges between vertices in S are

present. It is not difficult to show that any DNF for CLIQUE must have size
(
n
k

)
. We will show

that an arbitrary monotone circuit cannot do much better.

Theorem 2. Assuming k ≤ n1/4, any monotone AND/OR circuit for CLIQUEk has size nΩ(
√
k).

Clique indicators and special DNFs

To warm up towards the proof of Theorem 2 let us prove that CLIQUEk requires large monotone
DNFs, but in a different way than usual. Let’s say a graph is a proper clique if it consists of a
clique on some subset of its vertices and no other edges. Suppose φ is a monotone DNF of size s
computing CLIQUEk. Then φ must, in particular, accept all

(
n
k

)
proper k-cliques. A term of φ

might look like
x12x14x24x16

If we replaced this term by
x12x14x24x16x26x46.

then the behavior of this term on proper k-cliques P doesn’t change: Both terms accept those P
that contain vertices 1, 2, 4, and 6 and reject all other P . By monotonicity it follows that all graphs
with a k-clique are still accepted after the modification, and since we only added variables to terms
all graphs without a k-clique are still rejected by the DNF.

A clique indicator KW is an AND of variables xij over i, j in W . In general, if we replace each
term in φ by the smallest clique indicator implied by it, φ still computes the CLIQUEk function.
So we may assume, without loss of generality, that each term of φ is a clique indicator. We will
call a DNF in which every term is a clique indicator a special DNF.

Now suppose P is a random proper k-clique, chosen uniformly among all
(
n
k

)
possibilities. For KS

to accept P , S must be a subset of P . This occurs with probability at most

k

n
· k − 1

n− 1
· · · k − w

n− w
≤
(k
n

)w+1
, (1)

if the size of S is more than w. So if we remove all terms KS with |S| > k− 1 from φ, the resulting
DNF φ′ still accepts a (1 − s · (k/n)k)-fraction of proper k-cliques. If this number is strictly less
than one then φ′ must accept at least one proper k-clique, so at least one clique indicator must
have survived the removal. But this clique indicator also accepts some proper clique of size k − 1,
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and so does φ′. Since φ is an OR of φ′ and other terms, it too must accept this input, contradicting
the fact that it computes CLIQUEk. It follows that s must be at least (n/k)k.

To summarize this proof, first we argued that if a small monotone DNF computes CLIQUEk then
so does a small special DNF. We then showed that the wide clique indicators can be eliminated
from this special DNF with little effect on the proper k-cliques. But such a DNF cannot represent
CLIQUEk as it also accepts graphs that do not have a k-clique.

Approximating circuits by special DNFs

To prove Theorem 2 we would like to argue inductively that every gate in a small monotone circuit
for CLIQUEk must compute a small and narrow special DNF. The natural strategy is induction:
It would be great if we could say that if circuits C and C ′ have such representations, then so do
C or C ′ and C and C ′. (We assume that the gates have fan-in 2.) Unfortunately these operations
preserve neither the size nor in the case of and the structure of the representation. What we will
be able to argue, however, is that C or C ′ and C and C ′ can be approximated (in a suitable sense)
by small, narrow special DNFs.

The notion of approximation is different for positive and negative instances. Let us give a gen-
eral definition. Let P and N be two distributions on {0, 1}n such that CLIQUEk(P ) = 1 and
CLIQUEk(N) = 0 with probability one.

Definition 3. We say that φ : {0, 1}n → {0, 1} approximates C : {0, 1}n → {0, 1} with respect to
P and N if PrP [φ(P ) ≥ C(P )] ≥ 1− ε+ and PrN [φ(N) ≤ C(N)] ≥ 1− ε−. The parameters ε+ and
ε− are the positive and negative approximation error, respectively.

In our case P is a uniformly random proper k-clique. Here is what a sample of P looks like for
n = 6, k = 4:

1 2 4

3 6 5

We will describe N shortly. Let us first see how an OR gate affects the complexity of our special
DNF approximators.

OR gates Let us first look at a gate of the form C or C ′. Assuming that C and C ′ are
approximated by special DNFs φ and φ′, C or C ′ will be approximated by the special DNF
φ or φ′; the approximation error simply add up. However, the size of the DNF doubles for each
gate so it may grow exponentially with the depth of the circuit. What can we do to control this
growth?

Let’s look at an example. Suppose that at some point we end up with the following special DNF:

φ = K123 or K2347 or K1245 or K12678.

The sets 123, 1245, 1256, and 12789 have the structure of a sunflower: They all share the common
core 12, but if the core is discarded the remaining petals are pairwise disjoint. If we replace
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the corresponding clique indicators K123 or K1245 or K12678 by the indicator K12 of their core
obtaining

φ′ = K12 or K2347

only more positive instances will be accepted so the positive approximation error won’t increase.
However, removal of this terms might cause acceptance of some previously rejected negative in-
stances. If we can choose the distribution on negative instances so that this is unlikely to happen
then the negative approximation error might grow but not by much.

This brings us to the definition of the distribution N . To choose a random instance from N , we
first select a coloring col that assigns to each vertex v ∈ {1, . . . , n} one of k − 1 colors. The color
of each vertex is chosen uniformly and independently among all possible colors. The graph N then
consists of all edges among vertices of different colors. In every clique of N all vertices must have
different colors, so N can never have a clique of size k. Here is an example with n = 6, k = 4:

1

2

46

3

5

What are the chances that a negative instance that was rejected by φ is accepted by φ′, contributing
to negative approximation error? For this to happen, the core 12 must form a clique (so vertices 1
and 2 must be assigned different colors) while none of the sets 123, 1245, 12678 can be a clique (so
within each set there must be two vertices of the same color). We can calculate the error probability
like this:

PrN [K12 and (not K123) and (not K1245) and (not K12678)]

= PrN [K12] · PrN [not K123 | K12] · PrN [not K1245 | K12] · PrN [not K12678 | K12]

because conditioned on the choice of colors of vertices 1 and 2, the events K123, K1245, and K12678,
become independent. We can now bound the individual terms like this:

PrN [not K123 | K12] = Pr[col(3) = col(1) or col(3) = col(2) | col(1) 6= col(2)]

≤ Pr[col(3) = col(1) | col(1) 6= col(2)] + Pr[col(3) = col(2) | col(1) 6= col(2)]

= Pr[col(3) = col(1)] + Pr[col(3) = col(2)]

=
2

k − 1
.

By a similar calculation it follows that Pr[not K1245 | K12] ≤ 5/(k−1) and Pr[not K12678 | K12] ≤
9/(k−1). So the probability of a negative approximation error is at most 2·5·9/(k−1)3 ≤ (9/(k−1))3

for this instance. This probability drops exponentially in the size of the sunflower.

We can generalize this calculation to prove the following claim. A sunflower is a collection of sets
S1, . . . , Sp such that Si ∩ Sj = S1 ∩ · · · ∩ Sp for all i 6= j. This intersection is called the core of the
sunflower.

Claim 4. If S1, . . . , Sp is a sunflower, each Si has size at most w, and set elements are assigned
one of k − 1 colors independently at random, then the probability that all vertices in the core get
different colors but each Si has at least two vertices of the same color is at most (

(
w
2

)
/(k − 1))p.
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If w is at most
√
k − 1 then this probability is at most 2−p. So if we can ensure the existence

of a sunflower of size p among the sets in the special DNF, a simplification step with negative
approximation error at most 2−p is always possible. It turns out that once the formula grows
beyond a certain size such a sunflower always exists:

Lemma 5. Every collection of more than (p−1)ww! nonempty sets, each of size at most w, contains
a sunflower of size p.

To summarize, an OR of two special DNFs is always a special DNF. If this DNF becomes very
large then it must contain clique indicators of a large sunflower. If we replace these by a clique
indicator of their core, the DNF shrinks in size, preserves the positive approximation error, and
does not cause a large drop in the negative approximation error.

AND gates Now let’s consider a gate of the form C and C ′. If φ and φ′ are special DNFs
approximating C and C ′ then we would like to approximate C and C ′ by φ and φ′. However, this
is not a special DNF. Let’s see what this formula looks like. For example, if

φ = K12 or K235 and φ′ = K14 or K25

then we can expand φ and φ′ as

φ and φ′ = (K12 and K14) or (K12 and K25) or (K235 and K14) or (K235 and K25).

This is a DNF, but not a special one as its terms are not clique indicators anymore. If we proceed
as in our warmup and replace every term by the smallest clique indicator implied by it, there will
be no additional positive or negative errors:

ψ = K124 or K125 or K12345 or K235.

This transformation has, however, two undesirable effects. First, the size of ψ is now the product
of the sizes of φ and φ′. Second, the width grows as well: φ and φ′ only involve cliques of size 4,
while ψ involves a clique of size 5.

To reduce the width, we eliminate the terms involving cliques of size w or more. Removing terms can
never cause acceptance of previously rejected instances, so this transformation preserves negative
error. The probability of a positive error can be bounded as we did in our warmup calculation for
DNFs. To reduce size, we can apply the same transformation as for OR gates.

Proof of Theorem 2

We now have all the pieces to prove Theorem 2. To every monotone circuit C of size at most c we
will associate a special DNF φ of size at most s in which each term is an indicator of a clique of
size at most w. The values of s and w will depend on n, k, and c and will be determined later.

The formula φ is defined inductively as follows: The approximator of a variable xuv is the special
DNF φ = K{u,v}. If

φ = ORS∈SKS and φ′ = ORS′∈S′KS′

are approximators of C and C ′, then the approximator of φ or φ′ is the special DNF

pluck(ORS∈S∪S′KS)

where pluck(φ) is the DNF obtained after replacing any OR of clique indicators KS1 or · · · or KSp

for a sunflower S1, . . . , Sp of size p by a clique indicator KS1∩···∩Sp for its core, repeated for as long
as sunflowers of size p appear in φ.
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Finally, the approximator of φ and φ′ is the DNF

pluck(ORS∈S,S′∈S′ trim(KS∪S′))

where trim(KS) is KS if S has size at most w and 0 (false) otherwise.

By Lemma 5, if we set s = (p−1)ww!, the size of φ will remain bounded by s for otherwise φ would
contain sunflowers of size p that are ripe for plucking. Also, for each clique indicator KS in φ, S
will have size bounded by w because larger cliques are trimmed.

Lemma 6. The positive approximation error of φ is at most cs2(k/n)w+1.

Proof. By our discussion in the previous section, positive approximation error can only be intro-
duced by trimming. A trimming step introduces error only when the trimmed clique KS is fully
contained in P , namely when S is a subset of the vertices of P . By the calculation (1) this prob-
ability is at most (k/n)w+1. Since each special DNF to which trimming is applied has at most s2

terms and there are c gates in the circuit, by a union bound the positive approximation error is at
most cs2(k/n)w+1.

Lemma 7. The negative approximation error of φ is at most cs2(
(
w
2

)
/(k − 1))p.

Proof. By our discussion in the previous section, negative approximation error can only be intro-
duced by plucking. By Claim 4 each iteration of plucking introduces at most (

(
w
2

)
/(k−1))p negative

error. Since each special DNF is plucked at most s2 times and there are c gates in the circuit, by
a union bound the negative approximation error is at most cs2(

(
w
2

)
/(k − 1))p.

To complete the proof of Theorem 2 we need one more simple claim.

Claim 8. If φ is a nonzero special DNF in which each clique has size at most w then the probability
that φ accepts a negative instance is at least 1−

(
w
2

)
/(k − 1).

We can now complete the proof of Theorem 2. Assume C computes CLIQUEk. By Lemma 6 if
cs2(k/n)w+1 < 1 then φ must accept at least one positive instance. Then φ cannot be zero, so by
Claim 8 it must accept more than a 1−

(
w
2

)
/(k−1)-fraction of negative instances. But by Lemma 7

it cannot accept more than a cs2(
(
w
2

)
/(k − 1))p fraction of such instances. So if

(
w
2

)
/(k − 1) < 1

2
and cs2(

(
w
2

)
/(k − 1))p < 1

2 then C cannot compute CLIQUEk.

It remains to set the parameters so all inequalities are satisfied. First we choose w = b
√
k − 1c so

that
(
w
2

)
/(k−1) < 1

2 . Next we set p = w log(n/k) so that the only condition remaining to satisfy is
cs2(k/n)w < 1/2. For this choice of p, s ≤ w2w log(n/k)w, so all constraints are satisfied as long as

c < 1
2(n/w4k log(n/k)2)w. When k is less than n1/4, the last expression grows as nΩ(w) = nΩ(

√
k).

Proof of Lemma 5. We prove the lemma by induction on w. If w = 1 then all p sets are identical
so they form a sunflower. For the inductive step, suppose we have more than s = (p − 1)ww! sets
of size w each. If at least p are pairwise disjoint, these form a sunflower already. Otherwise, there
are at most p− 1 sets so that any other set intersects at least one of them. These sets span a total
of at most (p − 1)w elements. So there must be at least one element that belongs to more than
s/(p− 1)w = (p− 1)w−1(w− 1)! of the sets. Take all the sets that contain this element and remove
it from them. By inductive hypothesis, there must be a sunflower of size p among them. After
adding back the removed element we obtain the desired sunflower.
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3 NOT gates are precious

We just showed that monotone circuits that detect k-cliques on n-vertex graphs must be of size at

least nΩ(
√
k). If we allow NOT gates in the circuit, is it possible to do better? The best known

circuit for CLIQUEk has size (n/k)Ω(k). While it is not known in general if smaller circuits are
possible, in the next lecture we will argue that when k is on the order of n it would be very unlikely
to get circuits of size 2o(n).

Could it then be the case that every monotone function that requires large monotone circuits also
requires large circuits? One way to try and prove this would be to give a transformation that
converts a general circuit that computes a monotone function into a monotone circuit for the same
function of a comparable size. Claim 1 tells us that we can get circuits for each of the function’s
slices. Surely, if the function is monotone, we can combine all of them into a single monotone
circuit?

Surprisingly, it turns out that this is not possible: For infinitely many m, there exists a function
f : {0, 1}m → {0, 1} that has a circuit of size polynomial in m but requires monotone circuits of

size 2Ω(m1/8).

The function f is nothing but a modified variant ϑk of CLIQUEk when k = O(n1/4). A vector
coloring of value v > 1 is an assignment of unit vectors in Rn to the vertices of G so that if uw is
an edge then the dot product between the vectors assigned to u and w is exactly −1/(v − 1). The
function ϑk is given by:

ϑk(G) =

{
1, if G does not have a vector coloring of value k − 1

0, if it does.

This function is monotone: Adding edges to the graph only puts more constraints on dot products,
so if G doesn’t have a coloring, it cannot obtain one after an edge is added.

While this definition is a bit mysterious, all that we care about here is how the function ϑ behaves
on the positive and negative instances of CLIQUEk. First, negative instances do have a coloring
of value k − 1. For example if k = 4 the blue, red, and green vertices are assigned three equally
spaced vectors on the unit circle. The dot product of every pair is 1/2.

For general k, we assign each color class to a vector from the corresponding configuration in k − 2
dimensions in which every pair of vectors has dot product 1/(k − 2).

Now we argue that positive instances to not have a coloring of value k − 2. Suppose they did and
let v1, . . . , vk be the vectors associated to vertices in the clique. Then

‖v1 + · · ·+ vk‖2 =
k∑

i=1

‖vi‖2 +
∑
i 6=j

〈vi, vj〉 = k − k(k − 1) · 1

k − 2
< 0

which is impossible.
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To summarize, ϑk is a monotone function that accepts all positive instances and rejects all negative
instances. From our proof of Theorem 2 it follows that ϑk cannot have monotone circuits of size

nΩ(
√
k) for k ≤ n1/4. However, unlike CLIQUEk, ϑk has a circuit of size polynomial in n and k. The

reason is that the existence of the desired vector configuration can be formulated as a semidefinite
program, and semidefinite programs admit algorithms that run in time polynomial in the program
size. In the next lecture we will show that every algorithm can be converted into circuits of size
polynomial in the input size and in the worst-case running time of the algorithm on inputs of that
size.
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