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A refutation of a statement P is a proof of the statement not P . For example, given a boolean
formula φ, asking someone to refute that φ is satisfiable means asking him to prove that φ is not
satisfiable. Asking him to refute that G0 and G1 are isomorphic means asking him to prove that
G0 and G1 are not isomorphic.

Today we will study the existence of short and efficiently verifiable refutations for NP problems. We
will explain why, for example, it is believed that there are no such refutations for general instances
of SAT. On the other hand, we will show how the (interactive) refutations for graph isomorphism
follow directly from the existence of interactive proofs for the same problem satisfying an additional
property called statistical zero-knowledge.

1 Efficient refutations

The class coNP consists of those problems (YES ,NO) such that (NO ,YES ) is in NP. These are
the problems that have short and efficiently checkable refutations. For example, the following two
problems are in coNP:

SAT: Is boolean formula φ unsatisfiable?

PMATCH: Does graph G have no perfect matching?

GI: Are graphs G0 and G1 not isomorphic?

Let us compare the decision problems SAT and SAT. For SAT, given any boolean formula, we can
always provide a short and efficiently checkable proof that the formula is satisfiable: The certificate
is simply the satisfying assignment. But what if the formula is not satisfiable? Do we still expect
to have a proof that this is the case?

Consider, for instance, the formula:

(x1 or x2) and (x1 or x3 or x4) and (x1 or x2) and (x2).

This formula is not satisfiable for the following reason: The clauses (x1 or x2) and (x1 or x2) can
only be simultaneously satisfied if x2 is false, while the clause (x2) requires x2 to be true. So no
matter which assignment we choose, the formula will not be satisfied.

For this specific example we did manage to give a proof that the formula is unsatisfiable. Is it
possible to provide such a certificate for every unsatisfiable formula? If we allow the certificates
to have length exponential in the size of the formula, the answer is yes. However, it is not known
whether we can do so with polynomial length certificates that are verifiable in polynomial time.

Now let’s look at PMATCH: Can we get a certificate that a graph does not have a perfect matching?
Here the answer is yes: Tutte’s theorem tells us that a graph has no perfect matching if and only if
there exists a subset of vertices S such that after removing S and all its incident edges, the rest of
the graph has more than |S| connected components with an odd number of vertices. So the set of
vertices S is a certificate that the graph has no perfect matching: This set is certainly of polynomial
size, and once we have S the conclusion of Tutte’s theorem can be verified in polynomial time.

Actually, there is a more brutal way to certify that a graph has no perfect matching: Run Edmonds’
perfect matching algorithm on the graph. If the algorithm does not find a perfect matching, we
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can take this as a certificate that the perfect matching does not exist (if it did exist, the algorithm
would have found it).

These example illustrate the relationship between the classes P, NP, and coNP. In general, if a
promise problem (YES ,NO) is in P then (NO ,YES ) is also in P and therefore in NP, so P is a
subclass of coNP. On the other hand, we do not know if SAT is in coNP, giving a potential example
of a problem that is in NP but not in coNP. If this example is correct, then it is in fact universal:

Theorem 1. If SAT ∈ coNP, then NP = coNP.

Proof. We showed that there is a polynomial-time reduction from every NP-search problem to
SAT. This implies that there is a polynomial-time reduction between their decision versions. So for
every NP decision problem P = (YES ,NO) there is a reduction that maps YES instances of P to
satisfiable formulas and NO instances of P to unsatisfiable formulas. If SAT is in coNP then there
is an polynomial-time verifier that accepts unsatisfiable formulas (with a proof of unsatisfiability)
and rejects satisfiable ones (with any “proof”). Therefore there is a polynomial-time verifier for
P = (NO ,YES ), so P is in coNP.

To summarize, we know for sure that P is in the intersection of NP and coNP, but it appears
plausible that NP and coNP are distinct. Does the intersection of NP and coNP contain prob-
lems other than the ones in P? Graph isomorphism is a potential example: This is a problem
that has both polynomial-time proofs and polynomial-time (interactive) refutations, but no known
polynomial-time algorithms.

2 Statistical zero-knowledge

The interactive proof for graph non-isomorphism from the last lecture has one curious property:
After interacting with the prover, the verifier does not learn anything about the graphs G0 and
G1 beyond the fact that the two are not isomorphic. Recall that the verifier chooses a random bit
b ∈ {0, 1}, sends a random graph isomorhphic to Gb to the prover and expects to receive b as an
answer. So the verifier already knows the answer he is going to get (provided the graphs are indeed
isomorphic and the prover is honest).

Contrast this with the standard proofs for SAT where the verifier does not merely find out that the
formula is satisfiable, but also learns the satisfying assignment for it. Similarly, in a proof of graph
isomorphism, the verifier learns not only that G0 and G1 are isomorphic, but also the isomorphism
φ between the vertices of the two graphs. Is it possible to come up with alternate proofs that hide
this additional information?

We will show how to do so in the case of graph isomorphism. Consider the following interactive
proof for the statement “G0 and G1 are isomorphic:”

Interactive proof for graph isomorphism

On input (G0, G1):

P : Apply a random isomorphism to G0 and send the resulting graph G to the Verifier.

V : Send a random bit b ∼ {0, 1} to the Prover.

P : Send an isomorphism π such that π(Gb) = G.

V : If π(Gb) = G, accept, otherwise reject.
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This proof is clearly complete: If G0 and G1 are isomorphic then an isomorphism between Gb and
G will exist regardless of the value of b, so the verifier accepts yes instances with probability one.
On the other hand, the soundness (the probability that the verifier accepts when G0 and G1 are
not isomorphic) is at most half: Regardless of the choice of G, Gb and G fail to be isomorphic with
probability at least 1/2 over the choice of b, in which case the verifier rejects. So this is a valid
interactive proof for graph isomorphism.

Now let’s see what the verifier learns when G0 and G1 are isomorphic (beyond the fact that they
are isomorphic). The verifier observes a graph G obtained by applying a random isomorphism to
G0 (or G1) together with an isomorphism π from Gb to G. This is “information” that the verifier
could have generated on its own in the following way: First choose b and π at random and then set
G to equal π(Gb).

Proofs in which the verifier learns nothing beyond the validity of the statement to be proved are
called zero-knowledge proofs. For the general definition we need the following concepts:

• The statistical distance between two distributions X and Y over the same sample space is the
maximum over all events T of Pr[X ∈ T ]− Pr[Y ∈ T ].

• The view of interactive Turing Machine A in an interaction with B consists of A’s randomness
and the sequence of messages exchanged between the two.

• A function f is negligible if for every polynomial p and all sufficiently large n, f(n) ≤ p(n).

Definition 2. An interactive proof (V, P ) for promise problem (YES ,NO) is statistical zero-
knowledge if there exists a randomized polynomial-time Turing Machine S called the simulator
such that for every x ∈ YES , the statistical distance between S(x) and the view of V in the
interaction with P on input x is negligible in |x|.

The class SZK consists of all (promise) problems that have statistical zero-knowledge interactive
proofs, regardless of the number of rounds.

In the proof of graph non-isomorphism, when G0 and G1 are not isomorphic the verifier’s view
consists of a random bit b, a random permutation π, the graph π(Gb) (sent to the prover) and the
bit b′ equal to b (sent by the prover). The simulator outputs (b, π, π(Gb), b), which in this case is
identically distributed to the verifier’s view (i.e., the statistical distance is zero).

In the proof of graph isomorphism, when G0 and G1 are isomorphic the verifier’s view consists
of (G, b, π) where G is a random graph isomoprhic to G0 and b, π are random conditioned on
π(Gb) = G. The simulator outputs (π(Gb), b, π) which is again identically distributed to the
verifier’s view. So both examples satisfy our definition of statistical zero-knowledge.

3 Statistical difference

A sampler is a circuit C : {0, 1}m → {0, 1}n that takes a uniformly random input r and outputs
a sample C(r) ∈ {0, 1}n. The statistical distance between two samplers C0 and C1 with outputs
in {0, 1}n is the statistical distance between their output distributions. We consider the following
promise problem:

SD (statistical difference):
Input: Two samplers C0 and C1.
Yes instances: The statistical distance between C0 and C1 is at least 2/3.
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No instances: The statistical distance between C0 and C1 is at most 1/3.

We argue that SD has a statistical zero-knowledge proof. First, we show that this is the case when
the quantities 2/3 and 1/3 are replaced by 1 − ε and 1/3, where ε is some negligible function of
the input length (the sizes of C and D). We then design a reduction that affects this change of
quantities.

The proof for statistical distance is very much like the one of graph non-isomorphism:

Interactive proof for statistical difference

On input (C0, C1):

V : Choose random b ∼ {0, 1}, random r ∼ {0, 1}m and send Cb(r) to the prover.

P : Send b′ = 1 if y ∈ T and b′ = 0 if not, where T is the event that maximizes
Prr[C1(r) ∈ T ]− Prr[C0(r) ∈ T ].

V : If b′ = b, accept, otherwise reject.

If (C0, C1) is a yes instance of SD then Prr[C1(r) ∈ T ]−Prr[C0(r) ∈ T ] ≥ 1−ε, so Pr[C1(r) 6∈ T ] ≤ ε
and Pr[C0(r) ∈ T ] ≤ ε. Regardless of the choice of b, the prover makes a mistake with probability
at most ε. To analyze no instances we make use of the following alternative characterization of
statistical distance.

Lemma 3. The statistical distance between X and Y is δ if and only if there exists a joint distri-
bution (X,Y ) such that X = Y with probability 1− δ.

If (C0, C1) is a no instance of SD then the verifier’s first message can equivalently be described
like this: The verifier samples b ∼ {0, 1} and (Y0, Y1) from the joint distribution on the outputs
Y0, Y1 of C0, C1 from Lemma 3 then sends Yb to the prover. Conditioned on Y0 = Y1, b′ and b
are independent and the prover suceeds with probability exactly half, so the probability that the
verifier accepts can be at most 1

2(1− 2
3) + 1

3 = 2
3 . Therefore the described proof has completeness

error ε and soundness error at most 2/3.

It remains to argue that the proof is statistical zero-knowledge. If (C0, C1) is a yes instance, the
verifier’s view consists of b, r, Cb(r), and b′. The simulator outputs b, r, Cb(r), and b. Since
b′ = b with probability 1− ε, there is a joint distribution under which the two views are identically
distributed with probability 1 − ε. By the other direction of Lemma 3, the statistical distance
between the two views is at most ε, therefore negligible in the input size.

Manipulating statistical difference We now show how to enlarge the statistical distance gap
between yes instances and no instances from 2/3 versus 1/3 to 1− exp(s−Ω(1)) versus 1/3, where s
is the instance size. We will apply two different transformations given in the following lemmas:

Lemma 4. Given two distributions X0 and X1, let X ′0 and X ′1 consists of two independent samples
of Xa and Xb where a and b are random bits conditioned on a⊕ b = 0 and a⊕ b = 1, respectively.
Then the statistical distance between X ′0 and X ′1 is the square of the statistical distance between X0

and X1.

Proof. Given an event T that distinguishes X1 from X0, let T ′ be the event that exactly one of Xa

and Xb are in T . Then it can be calculated that

Pr[X ′1 ∈ T ′]− Pr[X ′0 ∈ T ′] = (Pr[X1 ∈ T ]− Pr[X0 ∈ T ])2
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so the statistical distance between X ′0 and X ′1 is at least δ2. To show it is at most δ2 we apply
Lemma 3. Let Z = X0 = X1 be the marginal distribution conditioned on X0 = X1 and X ′0, X

′
1 be

the marginal distributions conditioned on X0 6= X1. Then the joint distribution of (Xa, Xb) is of
the type (Z,Z) with probability (1 − δ)2, (X ′a, Z) and (Z,X ′b) with probability δ(1 − δ) each and
(X ′a, X

′
b) with probability δ2, where the two samples are independent. Now compare the four types

of samples conditioned on a⊕ b = 0 and on a⊕ b = 1. The first three are identical, while the last
one is disjoint. It follows that X ′0, X

′
1 are identical with probability at least 1 − δ2. By the other

direction of Lemma 3 the statistical distance between X ′0 and X ′1 is at most δ2.

Lemma 5. Let X ′0 and X ′1 consist of k independent copies of X0 and X1, respectively. If the
statistical distance between X0 and X1 is δ then the statistical distance between X ′0 and X ′1 is at
most kδ and at least 1− 2 exp(−kδ2/2).

Proof. By Lemma 3 X0 and X1 are identical with probability 1 − δ. The probability that all k
samples are identical is then at least 1− (1− δ)k = 1−kδ. For the other inequality, if T is an event
such that Pr[X1 ∈ T ]− Pr[X0 ∈ T ] ≥ δ and (Pr[X1 ∈ T ] + Pr[X0 ∈ T ])/2 = p then by a Chernoff
bound the probability that at least kp of the copies of Xb are in T is at least 1−exp(−kδ2/2) if b = 1
and at most exp(−kδ2/2) if b = 0. So the statistical distance must be at least 1−2 exp(−kδ2/2).

Given samplers C0 and C1 of size s, Lemma 4 produces samplers of size 2s+O(1) whose statistical
distance is the square of the original one. If we apply this lemma log ` times, we obtain samplers
(C ′0, C

′
1) of size 2O(`) · s whose statistical distance is at least (2/3)` for yes instances (C0, C1) and

at most (1/3)` for no instances. Now applying Lemma 5 with k = 3`−1 to C ′0 and C ′1 we end up
with a pair of samplers of size 2O(`)s whose statistical distance is at most 1/3 for no instances and
at least

1− 2 exp(−k(2/3)2`/2) ≥ 1− exp(−(4/3)`/6)

for yes instances. Choosing ` = log s gives a polynomial-time reduction with a negligible error for
yes instances as desired.

4 Completeness of statistical difference

The complement SD of SD is hard for statistical zero-knowledge, namely:

Theorem 6. For every promise problem (YES ,NO) there is a polynomial-time reduction that on
input x outputs a pair of samplers C0, C1 such that

If x ∈ YES , then C0 and C1 have statistical distance at most 1/3,

If x ∈ NO , then C0 and C1 have statistical distance at least 2/3.

Corollary 7. If a promise problem (YES ,NO) is in SZK then its complement (NO ,YES ) is also
in SZK.

Proof. By Theorem 6, (YES ,NO) reduces to SD. Therefore (NO ,YES ) reduces to SD. In the last
section we argued that SD is in SZK, so (NO ,YES ) is also in SZK.

In particular, SD itself is in statistical zero-knowledge. By reversing the role of the yes and no
instances we also obtain that SD is complete for SZK. Since SD has a two-round interactive proof
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(regardless of its zero-knowledge-ness) it is in AM. Combining all these observations we get the
complexity class containment

SZK ⊆ AM ∩ coAM

where coAM is the class of problems (NO ,YES ) such that (YES ,NO) is in AM. In particular,
this makes it unlikely that SAT has statistical zero-knowledge proofs because it would then have
efficient refutations.

Before we sketch the proof of Theorem 6 let us explain how a restricted variant of graph non-
isomorphism reduces to SD. As in the example we gave in the last lecture, we will work under the
promise that G0 and G1 have no automorphisms. We want a reduction that maps pairs of graphs
(G0, G1) to pairs of circuits (C0, C1) so that if G0 and G1 are not isomorphic then C0 and C1 are
statistically close, while if G0 and G1 are isomorphic then C0 and C1 should be statistically far.

Let us consider the distribution X = π(Gb) where π is a random isomorphism and b is a random
bit. If there are no automorphisms, and n is the number of vertices, then X is a flat distribution
over a set of size 2n! when G0 and G1 are not isomorphic and 2n! when they are. If we take a
sequence of six independent copies of X, the resulting distribution X6 is also flat over support size
26(n!)6 and (n!)6 for yes and no instances respectively. We now apply the following lemma to X6:

Lemma 8. Let Z be a random variable taking values in {0, 1}n. If Z is a flat distribution over a
set of size at least 2m and H : {0, 1}n → {0, 1}m−2` is a pairwise-independent hash function then
the statistical distance between (H,H(Z)) and (H,U) is at most 2−`, where U is a uniform random
variable independent of H.

We apply Lemma 8 to Z = X6 with m = 6 log(n!) + 6 and ` = 2. If G0 and G1 are not isomorphic
by Lemma 8 the statistical distance between (H,H(Xk)) and (H,U) is at most 1/4. If G0 and
G1 are isomorphic then for every H there are at most (n!)6 possible outputs of H(Xk) and 4(n!)6

possible outputs of U . If T is the event consisting of the possible outputs of (H,H(Xk)) then
Pr[(H,H(X6)) ∈ T ] = 1 while Pr[(H,U) ∈ T ] is at most 1/4, so the statistical distance between
the two is at least 3/4.

Proof sketch of Theorem 6 The first step in the proof of Theorem 6 is a transformation of the
statistical zero-knowledge proof for (YES ,NO) into one in which the verifier uses public coins, like
the one for graph isomorphism. We will not show this part of the proof and will assume that each
verifier message consists of a sequence of public coins.

We will assume that the completeness and soundness gaps of the proof system are negligible. This
can be arranged by repeating the proof sequentially sufficiently many times. Let 2r(n) be a bound
on the number of rounds of the proof system on inputs of size n, assuming the verifier asks first.
Finally, instead of proving a 1/3 versus 2/3 gap we will prove a negligible versus Ω(1/r(n)) gap.
This can then be amplified to 1/3 versus 2/3 using Lemma 5. We will freely make use of properties
of statistical distance given in the Appendix.

On input x of (YES ,NO), the output distributions of C0 and C1 will consists of two parts. The
first part is a single bit: In C0 first the verifier’s view is sampled from S(x) then the verifier’s
decision given this view is output. In C1 this bit is always 1.

The second part is a partial interaction sampled independently as follows: In both C0 and C1 a
random number i between 0 and r(|x|)− 1 is chosen. In C0, the first 2I + 1 messages S(x) of the
simulator are output. In C1, the first 2I messages of S(x) are output followed by an independent
random string corresponding to the next message of the verifier. To summarize:
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C0 samples (V ’s output on S(x), first 2I + 1 rounds of S(x)),
C1 samples (1, first 2I rounds of S(x) followed by a random question).

We show that if x is a yes instance then C0 and C1 are statistically close. First, the verifier must
almost always accept the view provided by S(x), for otherwise it would distinguish the output of
the simulator from its view of the actual interaction with the prover, violating the zero-knowledge
property. So the first bit is almost always 1 in both distributions. For the second part, by the
zero-knowledge property for every i the first 2i+1 messages of the simulator are ε-close to the same
messages in the actual interaction for some negligible ε. In the actual interaction, these consist of
the first 2i messages followed by an independent random question asked by the verifier. Applying
zero-knowledge again, they are therefore 2ε-close to the first 2i messages of the interaction followed
by a random verifier message. We conclude that both parts of C0 and C1 are within negligible
statistical distance.

Now suppose x is a no instance. Consider the following distribution T (x) of verifier’s views: First
the verifier asks a random question q1. Then the prover samples an answer a1 by running S(x)
conditioned on the first message of S(x) being equal to q1. Then the verifier answers a random
question q2. Then the prover samples an answer a2 by running S(x) conditioned on the first three
messages being equal to q1, a1, and q2 respectively, and so on. We consider two cases.

If the statistical distance between S(x) and T (x) is at most 1/3 then the verifier rejects the view
S(x) with probability at least 1/2 because T (x) represents an actual interaction between a verifier
and a prover, so the probability that the verifier accepts this interaction is negligible. By statistical
closeness, the probability that the verifier accepts S(x) can be at most 1/2. Then the first bit of C0

is one with probability at most 1/2, so the statistical distance between C0 and C1, even restricted
on the first bit, is at least 1/2.

If, on the other hand, the statistical distance between S(x) and T (x) exceeds 1/3 we claim that
the statistical distance between the second part of C0 and C1 is at least 1/3r, where r = r(|x|). To
see this consider the following hybrid distributions H0, . . . ,Hr: In distribution Hi the first 2i − 1
rounds are sampled as in T (x), but the remaining rounds are sampled from S(x) conditioned on
these first 2i− 1 messages. Then H0 = S(x) and Hr = T (x), so the statistical distance between H0

and Hr is at least 1/3. It follows that for a random I, the statistical distance between HI and HI+1

is at least 1/3r. This remains true if we truncate HI and HI+1 after the first 2I+1 rounds because
the remaining rounds are sampled from the same conditional distribution. But then HI and HI+1

become identical to the second part of C0 and C1 so the statistical distance between these two is
at least 1/3r.
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Properties of statistical distance

In Section 4 we made use of the following properties of statistical distance sd. These can be derived
from the definition and Lemma 3.

Claim 9. For any three random variables X,Y, Z, sd(X,Z) ≤ sd(X,Y ) + sd(Y,Z).

Claim 10. For any pair of random variables X,Y and randomized procedure A, sd(A(X), A(Y )) ≤
sd(X,Y ). In particular, projection on a subset of coordinates cannot increase statistical distance.
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