Problem 1

In this question you will investigate the hardness of the distributional Diffie-Hellman problem in cyclic groups. Assume p and $(p-1) / 2$ are both prime numbers. Recall that \mathbb{Z}_{p}^{*} is the group $\{1, \ldots, p-1\}$ under multiplication modulo p and $Q_{p}=\left\{y^{2}: y \in \mathbb{Z}_{p}^{*}\right\}$.
(a) Choose a generator h of \mathbb{Z}_{7}^{*}. Calculate the distributions $h^{x y}$ where x, y are chosen uniformly and independently from $\{1, \ldots, 6\}$ and h^{z} where z is chosen uniformly from $\{1, \ldots, 6\}$.
(b) Repeat part (a) for Q_{7} instead of \mathbb{Z}_{7}^{*}.
(c) Let h be a generator of \mathbb{Z}_{p}^{*}. Show that there exists a circuit A of size polynomial in the number of bits of p (i.e. $\log p$) such that

$$
\operatorname{Pr}_{x, y \sim\{1, \ldots, p-1\}}\left[A\left(h^{x y}\right)=1\right]-\operatorname{Pr}_{z \sim\{1, \ldots, p-1\}}\left[A\left(h^{z}\right)=1\right] \geq \varepsilon
$$

for some constant $\varepsilon>0$. You may assume that adding, multiplying, and powering numbers modulo p can be done by circuits of size polynomial in the number of bits of p.
(d) Is part (c) true if we replace \mathbb{Z}_{p}^{*} by Q_{p} ?

Problem 2

Prove Theorem 4 from Lecture 10. You do not need to match the exact parameters as long as the loss of security is polynomial.

