
CSCI 5440: Cryptography Lecture 10
The Chinese University of Hong Kong 21 November 2012

1 Digital signatures

A digital signature scheme is the public-key analog of a MAC. In a digital signature, Alice begins
by generating a public key-secret key pair and shares her public key with everyone, Eve included.
Now suppose Bob receives a message M from alice together with a “signature” T . Using only
Alice’s public key, Bob can then verify that the message M was sent by Alice and that it was Alice
who sent this message.

There is one important difference between a MAC and a digital signature: digital signatures are
not deniable. Suppose Bob claims to Charlie that he received a message M with a signature T
from Alice, but Alice denies she has sent this message. In a digital signature scheme, Charlie can
check for himself whether Bob is telling the truth: If the pair (M,T ) verifies under Alice’s public
key, then Bob is correct. If the authenticity of M is established using a MAC, this is impossible
because M is only guaranteed to be unforgeable under the secret key K shared by Alice and Bob.
For Charlie to verify that Alice sent M Bob needs to give him this key K, but there is no guarantee
that Bob won’t be cheating by providing Charlie with some other key K ′ that has no relation to
the actual key used by Alice and Bob.

Thus a digital signature is much like a physical signature that Alice puts on paper when she signs
a contract with Bob: Not only does this tell Bob that Alice is the person bound to the contract,
but Bob can also present the contract in court to prove this if necessary.

Let us first give a definition of digital signatures.

Definition 1. A digital signature scheme for messages of length m is a triple of algorithms
(Gen, Sign, V er) where

• Gen is a randomized algorithm that takes no input and produces a pair of keys (SK,PK).

• Sign is an algorithm that takes a secret key SK and a message M and outputs a signature
Sign(SK,M).

• V er is an algorithm that takes a public key PK, a message M and a signature T and outputs
1 (for accept) or 0 (for error) such that for every message M ,

Pr[V er(PK,M,Sign(SK,M)) = 1].

The security requirement is similar to the one for MACs: Even if Bob can obtain signatures of
messages of his choice by querying an oracle, he cannot produce a forgery.

Definition 2. A digital signature scheme (Gen, Sign, V er) is (s, ε) unforgeable if for every oracle
circuit A? of size at most s,

Pr[ASign(SK,·)(PK) produces a forgery] ≤ ε

where a forgery is a pair (M,T ) such that V er(PK,M, T ) = 1.

1



Implementing digital signatures is somewhat more difficult than the other cryptographic function-
alities we have seen so far, so we will do it in stages. To begin with, we will allow the adversary
A? to make only one query to the signing oracle. We will then extend this scheme to handle an
arbitrary number of queries.

2 One-time signatures

We will say a digital signature is (s, ε) one-time secure if it satisfies the definition of (s, ε) un-
forgeability, but under the additional assumption that A? makes at most one query from its oracle.
(Technically we require that A? contains only one oracle gate.)

This is an extremely weak notion of security so it is important to keep in mind that one-time
signatures are not our final goal. They are a “temporary” object towards getting a scheme with a
much stronger notion of security.

To illustrate the idea, we’ll start with something even simpler: One-time signatures for a one-bit
message, i.e. the message can take only two values M = 0 or M = 1. Given a public key PK, the
adversary can ask the oracle to see either the signature of 0 or the signature of 1. If it asks for the
signature of 0 then it ought to forge the signature of 1, and vice versa.

Construction of a one-time bit signature Let f : {0, 1}k → {0, 1}k be a one-way function.
We now describe the algorithms Gen, Sign, and V er.

The algorithm Gen chooses x0 and x1 independently at random from {0, 1}k and let y0 = f(x0)
and y1 = f(x1). It outputs the key pair SK = (x0, x1) and PK = (y0, y1).

The algorithms Sign and V er are given by

Sign((x0, x1),M) = xM ) and V er((y0, y1),M, z) =

{
1, if f(z) = yM

0, otherwise.

It is easy to see that (Gen, Sign, V er) is a bit signature scheme: f(xM ) = yM for both M = 0 and
M = 1.

What about security? Suppose that A? queries the signing oracle on the message 0 and the oracle
returns x0. After this, the adversary has seen x0 as well as the public key (y0, y1) = (f(x0), f(x1)).
Can he use this information to come up with the forgery (1, x1)? Intuitively, the “information”
(x0, f(x0)) should be useless to him because x1 is independent of x0, so knowing anything about x0
should not help him invert f(x1). To turn this intuition into a proof we have to be careful because
the choice of A?’s oracle query – 0 or 1 – may depend on the public key (f(x0), f(x1)).

Claim 3. If f is an (s, ε)-one way function, then (Gen, Sign, V er) is a (Ω(s), 2ε) one-time secure
bit signature scheme.

Proof. If (Gen, Sign, V er) is not (Ω(s), 2ε) one-time secure, then there exists an oracle circuit A′?

of size at most s′ that makes at most one query and such that

Pr[A′Sign(SK,·)(PK) produces a forgery] ≥ ε′.

Now consider the following circuit A for inverting f :

2



A: On input y ∈ {0, 1}k,
Choose b ∼ {0, 1} at random. Set xb = error, yb = y, xb ∼ {0, 1}

k and yb = f(xb).
Simulate A′?(y0, y1). When A′? makes a query M answer with xM .
Output the signature part of A′?(y0, y1).

When x is chosen at random from {0, 1}k and y = f(x), (x0, x1), (y0, y1) is identically distributed
to a public key-secret key pair. Since M is independent of b, we have that

Pr[A′Sign(x0,x1,·)(y0, y1) produces a forgery and M 6= b]

= Pr[A′Sign(x0,x1,·)(y0, y1) produces a forgery] Pr[M 6= b] ≥ ε′/2.

It remains to check that whenever A′Sign(x0,x1,·)(y0, y1) produces a forgery and M 6= b, it must be
that A(y) is an inverse for y under f , that is f(A(y)) = y. Since M 6= b, the forgery must be of
the form (b, x) with f(x) = yb. But M 6= b also tells us that yb = y, so A outputs x such that
f(x) = y.

Although this proof is short it contains an important idea: by choosing M at random independently
of everything else, we were able to obtain a lower bound for the probability of the event that
A′Sign(x0,x1,·)(y0, y1) produces a forgery and M 6= b, which allows us to invert f . If we fixed M
to say 0, we could have been unlucky: Perhaps A′ always queries the oracle for a signature of 0,
in which case xM = error and the answer that A provides does not look like one coming from a
signing oracle.

Signing longer messages We now show how to turn the bit signature into a one-time digital
signature for longer messages. The idea is to sign each bit separately. Formally, given a bit signature
scheme (Gen, Sign, V er), we define the following scheme (Gen′, Sign′, V er′) for messages of length
m:

• Key generation: Gen′ runs Gen independently m times to obtain key pairs (SK1, PK1),
. . . , (SKm, PKm). It sets the secret key to SK = (SK1, . . . , SKm) and the public key to
PK = (PK1, . . . , PKm).

• Signature: Sign′(SK,M) = (Sign(SK1,M1), . . . , Sign(SKm,Mm) where Mi is the i’th bit
of M .

• Verification: V er′(PK,M, T ) = 1 if V er(PKi,Mi, Ti) = 1 for every i, 1 ≤ i ≤ m and 0
otherwise, where Mi is the i’th bit of M and Ti it the i’th block of T .

It is easy to see that (Gen′, Sign′, V er′) is a functional one-time digital signature for message length
m. In Homework 3 you will also prove that it is secure:

Theorem 4. Assume (Gen, Sign, V er) is an (s, ε) one-time secure bit signature. Then (Gen′, Sign′, V er′)
is an (s− O(mt), ε/m) one-time secure signature scheme for m bit messages, where t is an upper
bound on the size of Gen, Sign, and V er.

3



Signing messages of arbitrary length One issue with the above signature scheme is that the
key size is quite a bit larger than the message length. This is not merely a practical limitation. In
the next section where we will lift the one-time restriction on the signature scheme we will need to
sign messages that are at least as long as the public key. Just like in the setting of MACs, we can
apply cryptographic hash functions to turn a fixed-length MAC into one of arbitrary length.

Formally, let (Gen, Sign, V er) be a signature scheme for message length k and {hS : {0, 1}∗ →
{0, 1}k} be a cryptographic hash function family. We define the signature scheme (Gen′, Sign′, V er′)
for messages of arbitrary length:

• Key generation: Gen′ runs Gen to generate a key pair (SK,PK) and chooses a random key
S for hS . It outputs the key pair (SK ′, PK ′) where SK ′ = (SK,S) and PK ′ = (PK,S).

• Signature: Sign′(SK ′,M) = Sign(SK, hS(M))

• Verification: V er′(PK ′,M, T ) = 1 if V er(PK, hS(M), T ) = 1 and 0 if not.

The security of (Gen′, Sign′, V er′) is proved almost exactly like Claim 2 in Lecture 6, where we
argued a similar claim for MACs. Actually this proof is a bit easier because we only need to assume
and argue one-time security.

Theorem 5. Assume (Gen, Sign, V er) is an (s, ε) one-time secure signature scheme for message
length k and {hS} is an (s, ε) secure cryptographic hash family where hS is computable by a circuit
of size t. Then (Gen′, Sign′, V er′) is a (Ω(s/t), 2ε) one-time secure signature scheme for arbitrary
message length.

3 Constructing digital signatures

It is easy to see that if more than one access to the signing oracle is allowed, a forgery can be
produced even for a message of length 2: For example querying the signatures of the messages 00
and 11 and “cutting and pasting” the corresponding blocks we can forge the signature of 01.

We will however make use of the one-time signature in constructing signatures that are unforgeable
without a restriction on the number of times they are used. Let’s focus on constructing a signature
scheme for an arbitrary but specific message length m. The idea will be to sign every message M
under a different secret key-pubilc key pair (SKM , PKM ).

How do we go about constructing an unforgeable signature scheme then? One idea is to use the one-
time signature scheme, but with a different pair of keys (SKM , PKM ) for every message M . If the
key pairs are mutually independent, observing the signatures of messages M1, . . . ,Mk should not
give us any information about what the signature of a message M different from the previous ones
should look like because the key pair (SKM , PKM ) is independent of (SKM1 , PKM1), . . . , (SKMk

, PKMk
).

The problem with this construction is that all together the keys are now over 2m bits long and
so the key generation algorithm is not efficient. So let us look into key generation in more detail.
Recall that for every M , the key generation algorithm chooses some randomness R(M) ∈ {0, 1}k
and computes the key pair (SKM (R(M)), PKM (R(M)). We said it would be desirable for the key
pairs (SKM , PKM ) to be mutually independent, which means that the values R(M) should be
independent of one another. In other words, if we think of R as a function from {0, 1}m to {0, 1}k

4



we would like it to be a random function. However, to describe this function Alice and Bob need
k2m bits of information. What if we replace R with a pseudorandom function FK which can now
be described only by specifying the short key K?

Can such a scheme be implemented? Let (Gen, Sign, V er) be a one-time signature scheme. To
sign a message M , Alice would output T = Sign(SKM ,M) and to verify the signature, Bob would
check that V er(PKM ,M, T ) = 1, where the key pair (SKM , PKM ) is obtained by running Gen
with randomness FK(M). This describes how signing and verifying signatures should work. What
about key generation? If we include K as (part of) the secret key, Alice can generate SKM by
running Gen with randomness FK(M) at runtime when she needs to sign M .

But how does Bob now know what PKM is supposed to be? What Alice can do is also send PKM

to Bob at runtime as part of the signature. So now to compute the signature of M , Alice would
first run Gen with randomness FK(M) to obtain (SKM , PKM ) and then sign M with the pair
(PKM , Sign(SKM ,M)). To verify this signature, Bob should now run the following procedure

V er′(?,M, (PKM , T )) = V er(PKM ,M, T ).

This construction looks suspicious as the verification V er′ makes no use of its public key! In fact
forgeries are now quite easy to obtain even without a signing oracle (you should figure this out
yourself). The problem is that in the absence of a public key, Bob has no proof that PKM was
indeed obtained by running Gen with randomness FK(M).

Here is the final ingredient of the construction: Alice will sign the public key PKM itself under a
master key (SK,PK). But this assumes we already have a signature scheme, which is something
we wanted to construct in the first place! It turns out we can implement a signature for PKM

recursively by using a public-key variant of the “database commitment scheme” from Problem 4
on Homework 2.

The construction Let (Gen, Sign, V er) be a one-time signature scheme and {FK : {0, 1}≤m →
{0, 1}k} be a one-way function family. Here {0, 1}≤m denotes all strings of length at most m
and k is the number of random bits used by Gen. We construct the following signature scheme
(Gen′, Sign′, V er′):

• Key Generation: Gen′ chooses a random seed K for FK . It runs Gen with randomness FK(ε)
(ε is the empty string) to obtain a master key pair (SKε, PKε). It outputs the key pair
(K,PKε).

• Signature: Given a secret key K and a message M , Sign(K,M) does the following. Let M i,
where 0 ≤ i ≤ m denote the i-bit prefix of M . Output the sequence

(PK0PK1, Sign(SKε, PK0PK1),

PKM10PKM11, Sign(SKM1 , PKM10PKM11),

. . . ,

PKMm−10PKMm−11, Sign(SKMm−1 , PKMm−10PKMm−11),

Sign(SKm,M))

where (SKQ, PKQ) is the key pair obtained by running Gen with randomness FK(Q) with
Q ∈ {0, 1}≤m.

5



• Verification: Given a public key PKε, message M , and signature of the form

(PK0PK1, T1, PKM10PKM11, T2, . . . , PKMm−10PKMm−11, Tm, T )

accept (output 1) if

V er(PKε, PK0PK1, T1) = 1 and

V er(PKM1 , PKM10PKM11, T2) = 1 and

. . .

V er(PKMm−1 , PKMm−10PKMm−11, Tm) = 1 and

V er(PKM ,M, T ) = 1

and reject (output 0) otherwise.

Assuming (Gen, Sign, V er) is a functional signature scheme, the functionality of (Gen′, Sign′, V er′)
follows by definition. We now argue that this scheme is secure.

Theorem 6. If (Gen, Sign, V er) is (O(s′), ε′/2s′) one-time secure and {FK} is an (O(s′t), ε′/2)
pseudorandom function family, then (Gen′, Sign′, V er′) is (s′, ε′) unforgeable, where t is an upper
bound on the circuit size of Gen′, Sign′, and V er′.

Instead of proving this theorem formally, which is a bit tedious, let’s try to understand why
this is true by working out a special case. First of all, let us pretend that the function FK is
a truly random function R. (Formally, we would do this by defining an ideal signature scheme
(RGen′, RSign′, RV er′) that is the same as (Gen′, Sign′, V er′) except that it uses R instead of
FK and its secret key is R instead of K and arguing that if the two can be distinguished by the
adversary then FK can be distinguished from a random function R.) This means the key pairs
(SKQ, PKQ) are now completely independent of one another.

Now let’s set m = 2 and suppose you have an adversary A′? that on input PKε and given or-
acle access to Sign′(SKε, ·) outputs a forgery with some probability. To be specific, suppose
A′Sign

′(SKε,·)(PKε) queries the oracle on messages 01 and 10 and manages to produced a forged
signature of 11. In other words, the algorithm receives the query answers

PK0PK1, Sign(SKε, PK0PK1), PK00PK01, Sign(SK0, PK00PK01), Sign(SK01, 01) and

PK0PK1, Sign(SKε, PK0PK1), PK10PK11, Sign(SK1, PK10PK11), Sign(SK10, 10)

and outputs a forgery 11, (PK ′0PK ′1, T1, PK ′10PK ′11, T2, T ) such that

V er(PKε, PK ′0PK ′1, T1) = V er(PK ′1, PK ′10PK ′11, T2) = V er(PK ′11, 11, T ) = 1.

If PK ′0PK ′1 6= PK0PK1, then T1 is a forged signature of PK ′0PK ′1 under the key pair (SKε, PKε).
To produce this forgery we would define an adversary A? that on input PKε and given oracle access
to S, simulates A′?(PKε). When A′? makes its first query 01, AS answers by

PK0PK1, S(PK0PK1), PK00PK01, Sign(SK0, PK00PK01), Sign(SK01, 01)

where (SKQ, PKQ) with Q ∈ {0, 1, 00, 01} are freshly generated independent key pairs. When A′?

makes its second query 10, AS answers by

PK0PK1, S(PK0PK1), PK10PK11, Sign(SK1, PK10PK11), Sign(SK10, 10)

6



where SK1, PK0 and PK1 are known from before, and (SKQ, PKQ) for Q ∈ {10, 11} are freshly
generated again. When A′? outputs its forgery, A? outputs PK ′0PK ′1. Notice that A? makes
only one call to its signing oracle, so (PK ′0PK ′1, T1) is indeed a one-time forgery for the key pair
(SKε, PKε).

If PK ′0PK ′1 = PK0PK1 but PK ′10PK ′11 6= PK10PK11, then we can similarly argue that PK ′10PK ′11
is a forged signature under the key pair (SK1, PK1). Now the adversary A? will interpret its input
at PK1 and it will again simulate A? on input PKε where PKε as well as all other keys in the
simulation are generated using fresh randomness. By a similar analysis we can conclude that
(PK ′10PK ′11, T2) is a one-time forgery for the key pair (SK1, PK1).

If PK ′0PK ′1 = PK0PK1 and PK ′10PK ′11 = PK10PK11, then A′? can be used to output a forgery
of the message 11 under key PK11 without having seen any signature under SK11 before. Now A?

interprets its input as PK11, does a similar simulation as before and outputs (11, T ) as its forgery.

7


	Digital signatures
	One-time signatures
	Constructing digital signatures

