
CSCI 5440: Cryptography Lecture 4
The Chinese University of Hong Kong 3 October 2012

1 Construction of pseudorandom functions

We will now show how to construct a pseudorandom function from a pseudorandom generator.
Let’s start with a pseudorandom function that takes one bit of input. In other words, we want a
family of functions FK : {0, 1} → {0, 1}k whose output is indistinguishable from the output of a
random function.1

In this case the solution is really simple: The pseudorandom function is fully described by the
pair of values (FK(0), FK(1)), and so it is sufficient that this pair be indistinguishable from a truly
random pair. But we can interpret the pair (FK(0), FK(1)) as a pseudorandom string of length 2k,
which suggest the following construction: Take a pseudorandom generator G : {0, 1}k → {0, 1}2k
and let FK(0) = G0(K), FK(1) = G1(K), where G0 and G1 denote the first m and last m bits of
the output of G respectively.

How about a pseudorandom function on two bits FK : {0, 1}2 → {0, 1}k? We can certainly do the
same trick – take a pseudorandom generator with 4k bits of output, which we divide into four
blocks FK(00), FK(01), FK(10), FK(11). But in fact it suffices to use a pseudorandom generator
G : {0, 1}k → {0, 1}2k and set:

FK(00) = G0(G0(K)) FK(01) = G1(G0(K)) FK(10) = G0(G1(K)) FK11 = G1(G1(K)).

We can view this as a two-level construction. The first input of FK determines if we take the left
or the right part of the output of G. Next, we use this part as a seed and choose the left or the
right part as output depending on the value of the second input.

How do we argue that FK is pseudorandom? We can do it in two stages: First, we replace the
inner application of G by a truly random string S0S1 of length 2k and argue that

H = (G0(S0), G1(S0), G0(S1), G1(S1))
is indistinguishable from (G0(G0(K)), G1(G0(K)), G0(G1(K)), G1(G1(K)).

But now we have a distribution H that is of the form (G(S0), G(S1)), where S0 and S1 are inde-
pendent seeds, so by a hybrid argument its output will be indistinguishable from random. (It is a
good exercise to complete the missing steps in this proof.)

This suggests the following general construction of a pseudorandom function FK : {0, 1}n → {0, 1}k
from a pseudorandom generator G : {0, 1}k → {0, 1}2k:

FK(x1x2 . . . xn) = Gxn(Gxn−1(. . . Gx1(K) . . .)).

where G0 and G1 are the first k and last k bits of the output of G, respectively.

1Here we will assume for simplicity that m = k; extending the construction to work for larger values of m will be
straightforward.

1

Theorem 1. If G is a pseudorandom generator against size s and bias ε, then {FK} is an
(Ω(s/tn), snε) pseudorandom function family, where t is the circuit size of G.

To prove this theorem, it will be convenient to use an alternative characterization of pseudorandom
generator: Here, we give the distinguisher oracle access to the output of G.

Lemma 2. If G : {0, 1}k → {0, 1}2k is a pseudorandom against size s and bias ε, then for every
circuit A of size s: ∣∣Pr[AG(Rk) = 1]− Pr[AR2k = 1]

∣∣ ≤ sε,

where Rn is an oracle that returns a random string of length n on every invocation.

Proof. Suppose there for some A? of size at most s (and therefore makes at most s oracle queries)∣∣Pr[AG(Rk) = 1]− Pr[AR2k = 1]
∣∣ > sε.

We apply a hybrid argument. Consider the hybrid oracle Hi that answers its first i queries as
G(Rk) and the other s− i queries as R2k. Then there must exist some i such that∣∣Pr[AHi−1 = 1]− Pr[AHi = 1]

∣∣ > ε.

Since the oracle answers are independent, the following circuit B is a distinguisher for G:

B: On input z, simulate A by answering its first i − 1 queries as G(Xj) for a random
string Xj , 1 ≤ j ≤ i− 1, its ith query by z, and its last s− i queries as Yj for a random
string Yj , i + 1 ≤ j ≤ s.

Then B(G(X)) is identically distributed with AHi−1 , while B(Y) is identically distributed with
AHi , and so ∣∣Pr[B(G(X)) = 1]− Pr[B(Y) = 1]

∣∣ ≥ ε.

By fixing the optimal choices of Xj and Yj and hardwiring them into B, we can get a circuit B of
size s that performs the distinguishing.

We can now prove Theorem 1.

Proof of Theorem 1. Suppose that for some A of size s′ = Ω(s/tn),∣∣Pr
[
AFK = 1

]
− Pr

[
AR = 1

]∣∣ ≥ snε.

Consider the following family of hybrid functions H0, . . . ,Hn:

Hi(x) = Gxn(· · ·Gxi+1(R(xi . . . x1)) · · ·), where R : {0, 1}i → {0, 1}k is a random func-
tion.

Notice that H0 is exactly the distribution FK , while Hn is a random function from {0, 1}n to {0, 1}k.

By the hybrid argument, there must exist an index i such that∣∣Pr[AHi−1 = 1]− Pr[AHi = 1]
∣∣ > sε.

2

By Lemma 2, to show that G is not pseudorandom it is sufficient to construct a circuit B? of size
s so that ∣∣Pr[BG(Rk) = 1]− Pr[BR2k = 1]

∣∣ > sε

To do this, notice that the functions Hi−1 and Hi differ only in what happens at level i. In Hi−1, the
inputs chosen at this level look like the outputs of G, while in Hi they look random. Intuitively, if we
can distinguish between Hi−1 and Hi, we should be able to distinguish random and pseudorandom
strings of length 2k.

The distinguisher B will do the following:

BO: Simulate the circuit A. When A makes its jth query x,
If this is the first query of A with prefix x1 . . . xi−1,

Query the oracle O to get a string z0z1 ∈ {0, 1}2k.
Answer A’s query by Gxn(· · ·Gxi+1(zxi) · · ·)
and memorize the pair (x1 . . . xi−1, z0z1).

Otherwise,
Find the previously memorized pair (x1 . . . xi−1, z0z1).
Answer A’s query by Gxn(· · ·Gxi+1(zxi) · · ·).

Return the output of A.

As this simulation goes along, BO dynamically builds a random function F : {0, 1}n → {0, 1}k. By
construction, if O is the oracle G(Rk), then F is distributed like Hi−1, and if O is the oracle R2k,
then F is distributed like Hi. It follows that

|Pr[BG(Rk) = 1]− Pr[BR2k = 1]| = |Pr[AHi−1 = 1]− Pr[AHi = 1]| > sε.

Notice that the size of B is at most O(tn) times the size of A (every time A calls its oracle, B
performs at most n evaluations of G, each of which takes circuit size t), which is at most s by our
choice of parameters. By Lemma 2, G is not pseudorandom against size s and bias ε.

2 The chosen ciphertext attack

Recall that in the chosen plaintext attack, Eve can obtain encryptions of messages of her choice. We
saw that (assuming pseudorandom generators exist) an encryption scheme can be secure against
such attacks, obtaining arbitrary encryptions gives Eve little help in distinguishing between the
encryptions of any two messages. We imagined some scenarios where this type of security may be
desirable, say if Eve is an active adversary that may influence Alice in producing various encryptions
to her benefit.

It is also possible to imagine scenarios where Eve may have active access to the decryption side
of the channel. Suppose every time Alice sends a valid ciphertext C to Bob, Bob replies with an
acknowledgment; however if C is some gibberish Bob informs Alice that there was an error. Now say
Eve intercepts a valid ciphertext C going from Alice to Bob, but instead of letting C pass through
the channel, she sends some modified version C ′ of the ciphertext, say C ′ = C + 1. Depending on
how Bob reacts to this (acknowledgment or error), Eve may be able to deduce information about
Alice’s message.

3

A very general model of this kind of adversary is the chosen ciphertext attack. Recall that the
way we modeled the chosen plaintext attack is by giving Eve access to an encryption oracle. The
security requirement (for CPA security) was that even in the presence of such an oracle, Eve
cannot distinguish between the encryptions of any two challenge messages M and M ′. In a chosen
ciphertext attack, Eve can also obtain decryptions of almost every message of her choice. Obviously,
we cannot allow Eve to obtain decryptions of every message, because she could then ask the oracle
to decrypt the challenge ciphertext and see if it equals M or M ′. However we can do the next best
thing: We will allow Eve access to an oracle that decrypts any ciphertext except for the challenge
ciphertext.

Definition 3. A private key encryption scheme (Enc,Dec) is (s, ε) secure against chosen ciphertext
attack (CCA-secure) if for every oracle circuit A? of size s and every pair of messages M and M ′,∣∣Pr[AEnc(K,·),Dec−C(K,·)(C) = 1]− Pr[AEnc(K,·),Dec−C′ (K,·)(C ′) = 1]

∣∣ ≤ ε

where C = Enc(K,M), C ′ = Enc(K,M ′), and Dec−C∗(K, ·) is an oracle that returns Dec(K,C)
whenever C 6= C∗, and the special symbol error otherwise.

To gain some intuition, let us examine the CPA-secure encryption scheme from last lecture:

Enc(K,M) = (S, FK(S) + M) Dec(K, (S,C)) = (FK(S) + C),

where S is a random string. This scheme is not CCA-secure; in fact, we can always use the
ciphertext oracle to decrypt the challenge ciphertext. To see this, notice that the if (S,C) is the
encryption of M , then (S,C + 1) is the encryption of M + 1. While we cannot ask the decryption
oracle for the decryption of the challenge ciphertext (S,C) directly, we can trick it into revealing
the decryption of (S,C + 1), and by subtracting 1 from the answer, recover the message M .

In fact, this type of attack can be quite problematic. Suppose Alice outputs an encryption (S,C) of
a message M . Now suppose Eve captures this ciphertext, replaces it with (S,C +M +M ′), where
M ′ is a message of her choice, and forwards this to Bob, impersonating Alice. Then Alice would
be under the impression that Bob had sent her an encryption of M ′ instead of an encryption of M .

In the attack we just described, Eve gets hold of a ciphertext Enc(K,M) obtained from some mes-
sage M and her objective is to produce an encryption of a related message M ′. A requirement that
would prevent this sort of attack is the following: Whatever meaningful ciphertext Enc(K,M ′) Eve
can produce from Enc(K,M) she should also be able produce without access to Enc(K,M). This
is a semantic notion of security, and encryption schemes that satisfy it are called non-malleable.2

Under the proper definition, one can show that if an encryption scheme is CCA secure, then it is
non-malleable (and vice versa). We won’t give a proof of this. You can look at section 5.4.5 of
Goldreich’s book for a more detailed discussion.

How do we go about designing a CCA-secure private-key encryption scheme? To begin with,
we must at least thwart the type of attack we just described. In this attack, Eve manages to
impersonate Alice by producing a forged ciphertext, and so it makes sense to design a mechanism
that prevents forgeries of ciphertexts. Let us start with the simpler problem of preventing the
forgery of plaintexts, or authentication.

2This terminology is inspired by material science: A metal or other material is malleable if it can be hammered
or pressed in a way that distorts its shape.

4

3 Message authentication codes

Informally, a message authentication code (MAC) is a scheme for sending messages (from Alice
to Bob) that ensures the integrity of messages: After receiving the MAC of a message, Bob is
convinced that the message is indeed the one that Alice intended to send him and not some other
message. There is no privacy requirement here: the objective of message authentication is not to
preserve secrecy but to prevent tampering. Message authentication codes are usually implemented
by appending some verification information to the message – a tag – that certifies the authenticity
and integrity of the message.

We begin by defining the functionality requirement for message authentication codes:

Definition 4. A message authentication code (MAC) with key length k, message length m, and tag
length t is a pair of (possibly randomized) algorithms (Tag, V er), where Tag : {0, 1}k × {0, 1}m →
{0, 1}t and V er : {0, 1}k ×{0, 1}m×{0, 1}t → {0, 1} so that for every key K ∈ {0, 1}k and message
M ∈ {0, 1}m,

V er(K,M, Tag(K,M)) = 1.

(The condition should hold with probability 1 if Tag and V er are randomized.)

We now define security. The security requirement should postulate that upon seeing the tag of a
message M , the adversary should not be able to produce a forgery M ′ 6= M together with a tag
for M ′. The notion of security we will define is quite strong: The adversary can query a tagging
oracle that can tag messages of its choice, and its task will be to come up with a forged tag of
any message that it has not previously queried. While we could consider more restricted notions of
security (passive adversaries, single message), we won’t bother doing so since we already have the
tools to achieve this strong requirement.

Definition 5. A MAC (Tag, V er) is (s, ε) secure against chosen message attack if for every oracle
circuit A? of size at most s,

Pr[ATag(K,·) produces a forgery] ≤ ε

where a forgery is a pair (M,T) such that (1) M is different from all the queries A makes to its
oracle and (2) V er(K,M, T) = 1. Here, the probability is taken over the choice of K and the
randomness of Tag and V er.

Intuitively, to satisfy this definition, the tag should be some property of the message that Alice
and Bob can easily compute, but should appear random to Eve, even if she has observed the tags
of other messages. This brings to mind (pseudo)random functions. Indeed, we will obtain a secure
MAC by applying a pseudorandom function to the message. Let FK : {0, 1}m → {0, 1}t be a family
of pseudorandom functions. We consider the following MAC (Tag, V er):

Tag(K,M) = FK(M) V er(K,M, T) =

{
1, if T = FK(M)

0, otherwise.

Claim 6. If {FK} is an (s, ε) pseudorandom function family, then (Tag, V er) is (s/m, ε + 2−t)
secure against chosen message attack.

5

Proof. For contradiction, suppose there exists a circuit A of size s/m such that

Pr[AFK(·) produces a forgery] > ε + 2−t.

As usual, we want to replace the pseudorandom function family with a truly random function
R : {0, 1}m → {0, 1}t. So let BF be a circuit that simulates AF until AF produces its potential
forgery (M,T), and outputs 1 if (1) M is different from all queries A made to its oracle and (2)
F (M) = T . Then B? has size at most s, and∣∣Pr[AFK produces a forgery]− Pr[AR produces a forgery]

∣∣ = |Pr[BFK = 1]− Pr[BR = 1]| ≤ ε

because FK is an (s, ε) pseudorandom family. Therefore

Pr[AR(·) produces a forgery] > 2−t.

However, the probability of AR producing a forgery (M,T) can be at most 2−t: Conditioned on
M being different from all the queries made by A, T is statistically independent of R(M), so
Pr[T = R(M)] = 2−t. This contradicts the assumption that (Tag, V er) is insecure.

6

	Construction of pseudorandom functions
	The chosen ciphertext attack
	Message authentication codes

