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1 Hardcore bits

To motivate the construction of pseudorandom generators from one-way permutations, we start
with the observation that since f : {0, 1}n → {0, 1}n is a permutation, the distribution f(x) when x
is uniformly random is already uniform. To get a pseudorandom generator, it is therefore sufficient
to find just one more bit h(x) so that (f(x), h(x)) is pseudorandom.

To understand what this h(x) should look like, let us go back to the definition of pseudorandom
generator. The definition requires that for every distinguisher D of a given size,∣∣Prx∼{0,1}n [D(f(x), h(x)) = 1]− Pry∼{0,1}n+1 [D(y) = 1]

∣∣ ≤ ε.
Since f(x) is uniformly distributed, we can rewrite this as∣∣Prx∼{0,1}n [D(f(x), h(x)) = 1]− Prx∼{0,1}n,b∼{0,1}[D(f(x), b) = 1]

∣∣ ≤ ε.
This equation says that given f(x), D is just about as likely to output 1 when its second input
is f(x) as when it is a completely random bit. Intutively, this means f(x) should give almost no
information about the value h(x). Such a function f is called a hardcore bit for f .

Definition 1. Let f : {0, 1}n → {0, 1}n be a function and h : {0, 1}n → {0, 1} be a predicate. We
say h is an (s, ε) hardcore bit for f if for every circuit P of size s (called a predictor)

Prx∼{0,1}n [P (f(x)) = h(x)] ≤ 1/2 + ε.

We now show that in order to construct a pseudorandom generator, it is sufficient to have a hardcore
bit.

Claim 2. Suppose f is a permutation and h is an (s, ε) hardcore bit for f . Then (f(x), h(x)) is
an (s−O(1), ε) pseudorandom generator.

The proof is unfortunately somewhat technical. As usual, we will assume that (f(x), h(x)) is not
a pseudorandom generator and show that h(x) cannot be a hardcore bit for f(x). But instead of
working with probabilities, it will be more convenient to convert them into expectations. Usually
we think of an event as a random variable Z that takes values 1 (when the event is true) or 0 (when
it is false). But in this proof instead of working with the expectation of Z directly, the expression
will simplify quite a bit by working with its “Fourier transform” (−1)Z . In this setting probabilities
and expectations are related by this formula:

E[(−1)Z ] = Pr[Z = 0]− Pr[Z = 1] = 1− 2 Pr[Z = 1] = 2 Pr[Z = 0]− 1.

Proof. Suppose (f(x), h(x)) is not an (s, ε) pseudorandom generator. By our previous discussion,
there is a circuit D of size s so that∣∣Prx∼{0,1}n [D(f(x), h(x)) = 1]− Prx∼{0,1}n,b∼{0,1}[D(f(x), b) = 1]

∣∣ > ε.
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Let us remove the absolute value (by possibly adding a negation gate at the output of D) and
introduce the shorthand notation Dx(a) = D(f(x), a). With this notation, we have

Prx,b[Dx(b) = 1]− Prx,b[Dx(h(x)) = 1] > ε.

Since Dx(b) is Dx(h(x)) with probability 1/2 and Dx(h(x)) with probability 1/2, we have

1

2
Prx[Dx(h(x)) = 1]− 1

2
Prx[Dx(h(x)) = 1] > ε.

Using the relation E[(−1)Z ] = 1− 2 Pr[Z = 1] applied to Z = Dx(h(x)) and Z = Dx(h(x)) we get

1

2
Ex[(−1)Dx(h(x))]− 1

2
Ex[(−1)Dx(h(x))] > 2ε.

By the conditional probabilities formula, we have

Ex,b[(−1)Dx(b)+b+h(x)] = Pr[b = h(x)] E[(−1)Dx(b)+b+h(x) | b = h(x)]

+ Pr[b = h(x)] E[(−1)Dx(b)+b+h(x) | b = h(x)]

=
1

2
E[(−1)Dx(h(x))] +

1

2
E[(−1)Dx(h(x))+1]

=
1

2
Ex[(−1)Dx(h(x))]− 1

2
Ex[(−1)Dx(h(x))]

From where we get that
Ex,b[(−1)Dx(b)+b+h(x)] > 2ε.

This expression says that Dx(b) + b as a random function in x correlates with h(x), so it suggests
using the following predictor P :

P : On input z, choose a random b ∼ {0, 1} and output the bit D(z, b) + b.

Then E[(−1)P (f(x))+h(x)] > 2ε, and by using the relation E[(−1)Z ] = 2 Pr[Z = 0]− 1, we get that

Pr[P (f(x)) = h(x)] = Pr[P (f(x)) + h(x) = 0] =
1

2
+

1

2
E[(−1)P (f(x))+h(x)] >

1

2
+ ε

contradicting the assumption that h is an (s, ε) hardcore bit for f .

We are now left with the task of constructing a hardcore bit for f . How should we go about this?

One thing we can try is to take the first bit x1 of the input x as a hardcore bit for f . After thinking
about it for a moment we see that, in general, this may not be a good idea: Perhaps f(x1 · · ·xn) is
of the form (x1, g(x2 . . . xn)) where g is a one-way permutation on n− 1 bits. Then x1 is certainly
not a hard-core bit for f as it can be determined completely by looking at the output.

We can extend this counterexample to conclude that for any specific input bit xi, there may be
one-way permutations f for which xi is not a hardcore bit. This suggests that to get a hardcore
bit for f , we may want to involve not one but all the input bits of f . An easy way to do this is to
calculate the XOR of all the input bits of f . Is x1 + · · · + xn then a hardcore bit for f? You can
again come up with examples where f could be a one-way permutation which reveals the value of
x1 + · · ·+ xn, in which case this is not a hardcore bit for f .
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2 The Goldreich-Levin theorem

The amazing insight of Goldreich and Levin is that this problem can be avoided by randomizing the
hardcore bit. Specifically, they suggest the following construction. Given a one-way permutation
f : {0, 1}n → {0, 1}n, it is easy to see that the function (x, r)→ (f(x), r), where r ∈ {0, 1}n is also
a one-way permutation. Then

Theorem 3. (Goldreich-Levin theorem) If f is a (s, ε) one-way permutation, then the predicate
hS(x, r) = 〈x, r〉 is an (s · (ε/n)O(1), O(ε)) hardcore bit for the permutation (f(x), r), where

〈x, r〉 = x1r1 + · · ·+ xnrn mod 2.

The proof of this theorem goes by contradiction. Let s′ = s · (ε/n)O(1) and ε′ = O(ε) and let’s
assume that 〈x, r〉 is not (s′, ε′) hardcore for (f(x), r). Then there is a predictor P for which

Prx,r [P (f(x), r) = 〈x, r〉] > 1

2
+ ε.

It follows that

Prx

[
Prr [P (f(x), r) = 〈x, r〉] > 1

2
+
ε

2

]
>
ε

2

Let S be the set of all x such that

Prr [P (f(x), r) = 〈x, r〉] > 1

2
+
ε

2
(1)

This suggests the following algorithm for inverting f(x) when x ∈ S: On input z = f(x), try to
find all a’s such that Prr [P (z, r) = 〈a, r〉] > 1/2 + ε/2. Since x satisfies (1), one of these a’s must
equal x. To find out which one, apply f to all of them and see which one maps to z. Since f is a
permutation, if f(a) = z it must be that a = x.

Can we implement this algorithm efficiently? At first, the idea seems unreasonable: It looks like
there might be exponentially many x′ such that Prr [P (z, r) = 〈x′, r〉] > 1/2 + ε/2, so even listing
all of them, much less computing them, may take too much time. However, this is not the case,
and the search of x′ can be completed efficiently:

Lemma 4. There is a randomized algorithm A? which on input ε and given oracle access to
g : {0, 1}n → {0, 1} runs in time (s/ε)O(1) and with probability at least 1/2 outputs a list that
contains all x such that

Prr [g(r) = 〈x, r〉] ≥ 1

2
+
ε

2
.

There are two proofs of the Goldreich-Levin theorem. We will present the proof of Kushilevitz and
Mansour, which uses Fourier analysis of Boolean functions.

3 Fourier analysis

Fourier analysis is a general technique for the study of functions f : {0, 1}n → R. We can think of
a function f from {0, 1}n to the real numbers as a vector in 2n dimensional space. The standard
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basis for this space consists of those vectors that have entry 1 in exactly one of the 2n positions, and
entry 0 everywhere else. These are the 2n functions δa (a ∈ {0, 1}n), which take value 0 everywhere
except at a, where they take value 1.

Now any function f over {0, 1}n can be written as a linear combination of the functions δa. The
coefficient in front of δa – the value f(a) – is then simply just the inner product between f and δa.

The Fourier transform allows us to express f in a different orthogonal basis. This is the basis
consisting of the character functions χa : {0, 1}n → R

χa(x) = (−1)〈x,a〉, a ∈ {0, 1}n.

It is easy to verify that, viewed as vectors, the functions χa are orthogonal and each has norm 2n/2.
Instead of normalizing these functions, it is more convenient to work with respect to the normalized
inner product

inner product of f and g = Ex∼{0,1}n [f(x)g(x)] =
1

2n

∑
x∈{0,1}n

f(x)g(x).

In this basis, a function f : {0, 1}n → R can be written as a linear combination of the χas:

f(x) =
∑

a∈{0,1}n
f̂a · χa(x)

where the coefficient f̂a is just the inner product of f and χa:

f̂a = Ex∼{0,1}n [f(x)χa(x)]. (2)

Parseval’s identity Since the bases {δa} and {χa} are related by an orthonormal transformation
(up to the normalization factor 2n/2), the sum of the squares of the coefficients of f in these two
bases should be the same. This is Parseval’s identity:∑

a∈{0,1}n
f̂2a = Ex∼{0,1}n [f(x)2].

We can also prove this algebraically by a calculation:

Ex∼{0,1}n [f(x)2] = Ex∼{0,1}n
[(∑

a∈{0,1}n
f̂aχa(x)

)2]
= Ex∼{0,1}n

[∑
a,b∈{0,1}n

f̂af̂bχa(x)χb(x)
]

=
∑

a,b∈{0,1}n
f̂af̂b Ex∼{0,1}n [χa(x)χb(x)]

=
∑

a∈{0,1}n
f̂2a

as the only surviving terms in the summation over a and b are those where a = b.

Corollary 5. if f is a function from {0, 1}n to {−1, 1}, then
∑

a∈{0,1}n f̂
2
a = 1.
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4 Proof of the Goldreich-Levin theorem

To prove Lemma 4, we now give an algorithm that given oracle access to g : {0, 1}n → {0, 1} outputs
all a’s such that

Pr[g(r) = 〈a, r〉] ≥ 1

2
+
ε

2
.

We want to see what Fourier analysis tells us about the function g. Instead of working with g
directly, it will be more convenient to look at the function G(r) = (−1)g(r) (which takes values −1
and 1) because

E[G(r)χa(r)] = 2 Pr[g(r) = 〈a, r〉]− 1

so now we simply need to find all a ∈ {0, 1}n for which

Ĝa = E[G(r)χa(r)] ≥ ε. (3)

Every a that satisfies (3) contributes at least ε2 to the sum
∑

a∈{0,1}n Ĝ
2
a, which equals 1 by

Corollary 5, so there can be at most 1/ε2 such a’s.

How do we find these a’s? We will generalize our objective a little bit and seek to find all a such
that Ĝ2

a ≥ ε2, and maybe even allow for a few a’s that don’t quite satisfy this condition. The idea
is to try to locate these relevant as by a divide-and-conquer strategy. One nice way to visualize
this strategy is as a search process along the following full binary tree of depth n. The root ε of
this binary tree is labeled by the value

∑
a∈{0,1}n Ĝ

2
a. Its left and right children 0 and 1 are labeled

by the partial sums ∑
a : a1=0

Ĝ2
a and

∑
a : a1=1

Ĝ2
a.

In general, a node at level i can be indexed by a string v ∈ {0, 1}i and is labeled by the value

`(v) =
∑

a : a1=v1,...,ai=vi

Ĝ2
a

so that the leaf indexed by a is labeled by Ĝ2
a.

Say a node v is relevant if `(v) ≥ ε2. Although there are exponentially many nodes in the tree,
there can be at most n/ε2 relevant ones because the labels in each level sum to 1. If we could
calculate the labels, it would be easy to identify all the relevant nodes via depth-first search starting
at the root and pruning the search path at irrelevant nodes.

How do we calculate the values of the labels? Using the Fourier coefficient formula (2), we can
obtain these values in time exponential in n. But if we are willing to settle for a probabilistic
approximation, we can do much better. Let’s start at the leaves. From the formula (2) we get

Ĝ2
a = Ex[G(x)χa(x)]2 = Ex[G(x)χa(x)] Ey[G(y)χa(y)] = Ex,y[G(x)G(y)χa(x+ y)].

This suggests that to estimate Ĝ2
a, we ought to sample some number of random pairs (x, y) and

output the average of the values G(x)G(y)χa(x+ y).

Now let v be an arbitrary node in the tree and FIX(v) be the set of those a ∈ {0, 1}n with
a1 = v1, . . . , ai = vi. We want to estimate the value

`(v) =
∑

a∈FIX(v)

Ĝ2
a = EG(x)G(y)

∑
a∈FIX(v)

χa(x+ y).
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The set FIX(v) could be exponentially large so we have to be a bit careful here. Recall that
χa(z) = (−1)〈a,z〉 so: ∑

a∈FIX(v)

χa(z) =
∑

a∈FIX(v)

(−1)〈a,z〉

If z is nonzero along any of the coordinates i + 1 up to n, this sum vanishes; otherwise, it equals
2n−iχv(z). So the only (x, y) pairs that contribute to the sum are those in which x and y agree on
the last n− i coordinates, and we can rewrite the identity as

`(v) = Ex′,y′∼{0,1}i,u∼{0,1}n−i [G(x′u)G(y′u)χv(x′ + y′)].

Here, the first i bits x′ and y′ of x and y are chosen independently at random, while the last
n − i bits denoted by u are random but identical in x and y. (When i = 0 the right side equals
E[G(u)2] = 1, which is consistent with Parseval’s identity.)

We now have all the ingredients for the Kushilevitz-Mansour algorithm. First, we have a proba-

bilistic procedure Ŝamp
G

(v) which estimates the label of node v as follows:

Ŝamp
G

(v): Sample O(n/ε4) independent random triples (x′, y′, u) and output the av-
erage of the values G(x′u)G(y′u)χv(x′ + y′).

The following lemma follows directly from Corollary 9 below.

Lemma 6. With probability at least 1 − ε2/20n, Ŝamp
G

(v) outputs a value between `(v) − ε2/6
and `(v) + ε2/6.

Now here is the Kushilevitz-Mansour algorithm:

Algorithm KMG(ε), where G is a function from {0, 1}n to {−1, 1} and ε > 0:
Apply the following recursive procedure P(v) starting with v equal to the empty string:

If Ŝamp
G

(v) ≥ ε2/2:
If v has length n, output v.
Otherwise, call P(v0) and P(v1).

Theorem 7. With probability at least 1/2, the outputs of KMG(ε) include all a such that Ĝ2
a ≥ ε2,

but it produces no more than O(n/ε2) outputs in total.

Proof. Let v be any node such that `(v) ≥ ε2. By Lemma 6,

Pr[Ŝamp
G
< ε2/2] ≤ ε2/20n

Since there are at most n/ε2 such nodes v, by a union bound we have

Pr[Ŝamp
G
< ε2/2 for some v s.t. `(v) ≥ ε2] ≤ n

ε2
· ε

2

20n
≤ 1

20
.

Therefore, all a ∈ {0, 1}n such that `(a) = Ĝ2
a ≥ ε2 will be included in the output of KMG(ε) with

probability at least 1− 1/20 = 19/20.
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Let B be the set of nodes whose label exceeds ε2/3 and B′ be the set of nodes outside B whose
parent node is in B. Since the nodes in B form a tree, we must have |B′| ≤ |B|+ 1. There must be
fewer than 3n/ε2 nodes in B, so B′ can have at most 3n/ε2 +1 nodes. By a very similar calculation
as above,

Pr[Ŝamp
G ≥ ε2/2 for some v in B′] ≤

(3n

ε2
+ 1
)
· ε

2

20n
≤ 1

5
.

Therefore, with probability at least 4/5, Ŝamp will output a value smaller than than ε2/2 on all
nodes in B′, so KMG(ε) will not make any recursive calls to P on a node outside B ∪ B′. Since
there are at most O(n/ε2) nodes inside B ∪B′, KMG(ε) can produce at most this many outputs.

With probability at least 1− 1/20− 1/5 ≥ 1/2, both of these conditions are met.

A Chebyshev’s inequality

Recall the variance of a random variable X is given by the formula

Var[X] = E[X2]− E[X]2 = E[(X − E[X])2].

Let X1, . . . , Xm. Large deviation inequalities give tail bounds on the distribution of X = X1 +
· · ·+Xm. Recall that X1, . . . , Xm are pairwise independent if for every pair i 6= j, Xi and Xj are
statistically independent. If X1, . . . , Xm are pairwise independent, then

Var[X] = Var[X1] + · · ·+ Var[Xm].

However, this is not true in general. Chebyshev’s inequality gives deviation bounds on the random
variable X. It always holds, but it is most useful when X is a sum of pairwise independent random
variables (or almost so):

Theorem 8 (Chebyshev inequality). For every random variable X

Pr
[
|X − E[X]| ≥ t

√
Var[X]

]
≤ 1

t2
.

Proof. We apply Markov’s inequality to the random variable Y = (X − E[X])2.

In particular we have the following corollary, which allows us to get estimates for the average of a
random variable from random sampling.

Corollary 9. Let X1, . . . , Xm be pairwise independent and identically distributed random variables
taking values in [−1, 1]. Let X = (X1 + · · ·+Xm)/m and µ = E[Xi] = E[X]. For every δ > 0,

Pr
[
|X − µ| ≥ δ

]
≤ 1

δ2m
.

Proof. We apply Chebyshev’s inequality to X. Notice that

Var[X] =
1

m2
(Var[X1] + · · ·+ Var[Xm]) ≤ Var[X1]

m
≤ E[X2

1 ]

m
≤ 1

m

and the corollary follows by choosing t = δ
√
m in Chebyshev’s inequality.
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