
CSCI 5440: Cryptography Lecture 1
The Chinese University of Hong Kong, Fall 2020 7 and 8 September 2020

Cryptography is the science of secure communication and computation in insecure environments.
Cryptographic methods underlie the security of modern computer systems, enabling private com-
munication in the presence of eavesdroppers, identification in digital environments, and ensuring
data integrity. These technologies have become such an integral part of our daily experience —
the facebook login, the swipe of the octopus card, the online purchase, the installation of a new
(untrusted) app — that we rarely pause to think what makes them possible.

The design of cryptographic algorithms is a delicate task because such algorithms are meant to
operate in adversarial environments. The behavior of an attacker, be it the hacker who wants to
impersonate you on facebook, the user who tries to double-spend his octopus card balance, or the
vendor who wants you to install a counterfeit app, is in general unpredictable. Moreover, attackers
are often inclined to expend much larger resources in compromising a system than what legitimate
users may put into maintaining its integrity. Good cryptographic algorithms must work under the
threat of wide range of adversarial attacks, most of which cannot be anticipated at the time of the
design.

The salient feature of modern cryptography, which distinguishes it from just about any other branch
of computer science, is that it imposes no constraints on how an attacker might operate (beyond
extremely generous assumptions on the amount of computational resources that are available to
it). Although this modeling decision places seemingly impossible design constraints, it is what
makes cryptographic solutions so powerful. It also enables the development of a rigorous theory of
cryptography in which the notion of a cryptographic attack is at the same time realistic and has a
precise mathematical meaning.

The objective of the first few lectures will be to introduce the basic elements of this theory and
apply it to develop encryption, identification, and authentication schemes. These will lead to some
natural generalizations and conceptualizations that may be less familiar but are fundamental in
modern cryptography. One specification that captures all of the above examples and many more
is that of secure multiparty computation. Here several parties that do not trust one another want
to perform some joint computation without revealing their private inputs. For example these may
be voters in an election, or hospitals comparing the effectiveness of their treatments, or gamblers
playing an online game of poker in the absence of a trusted card dealer. Identification protocols
in which you prove your identity without publicly revealing your “password” lead to the notion of
zero-knowledge proofs, a method by which one can prove the veracity of any statement (like the
knowledge of your password) without revealing any additional information (like what is the first
letter of your password).

Despite its considerable reach, cryptography does not provide solutions that meet all imaginable
security requirements. One familiar example of a problem without a cryptographic solution is copy
protection (i.e. the prevention of duplicating data like movies, books, and computer programs).
Another task whose impossibility is much less obvious is program obfuscation, namely the ability to
compile source code to an executable that hides the code. This is somewhat unfortunate because
many desirable cryptographic functionalities (for instance, various enhanced forms of encryption)
can be implemented fairly easily using a program obfuscator. Much recent research in cryptography
is concerned with the feasibility of restricted forms of obfuscation which are sometimes sufficient
for the desired applications.

Although this course is of a foundational nature, the concepts and ideas are relevant to several
recent trends in computer science. In many “cloud computing” scenarios, computationally restricted

1

clients outsource storage or computation to powerful servers. This brings out various security issues
(keeping the client’s data private, trusting the outcome of the computation) that are amenable to
cryptographic solutions. Cryptography is also closely related to machine learning: The problem of
breaking a cryptographic system can in a very precise sense be viewed as learning secret information
about it from traces of its behavior. This connection reveals important insights on the limitations
of learning algorithms. The race to build quantum computers and networks impacts the validity of
some basic assumptions underlying the security of existing systems, but also presents opportunities
for radically new solutions. Last but not least, there has been much recent interest in distributed
consensus algorithms, especially blockchains, which combine cryptography with economic incentives
to make some people very rich!

1 Secret sharing

Our first example of a cryptographic functionality is be secret sharing. This is good playground to
practice cryptographic reasoning while avoiding some of the complexities that will arise later on.
Informally, a secret sharing scheme is a mechanism by which a dealer distributes a secret piece of
information among a number of parties so that the secret can be recovered, but subsets of parties
learn no information about the secret.

Before we define the concept formally let us give an example. Suppose the secret information
consists of a single bit s ∈ {0, 1} that the dealer wants to split among three parties. The dealer
samples shares X1, X2, X3 for the three parties as follows:

if s = 0, sample X1X2X3 uniformly from {000, 011, 101, 110}
if s = 1, sample X1X2X3 uniformly from {111, 100, 010, 001}.

After sampling the dealer communicates the shares X1, X2, X3 to the three parties respectively. If
the three parties get together, they can reconstruct the secret uniquely from their shares X1, X2, X3.
On the other hand, regardless of the value of the secret s, the first party’s share X1 is a uniformly
random bit (0 with probability half and 1 with probability half). The same is true for the shares
X2 and X3. In fact, more is true: If parties 1 and 2 get together, the pair of values X1X2 that
they observe is uniformly distributed over the outcomes {00, 01, 10, 11}, regardless of the value of
the secret. The same is true for X2X3 and X1X3.

In conclusion, the mechanism that we described has the following two properties: (1) All three
parties can recover the secret bit and (2) The information visible to any single party and any pair
of parties is independent from the value of the secret bit.

This simple example already illustrates a basic premise of cryptography: Randomness is essential
for hiding information. Moreover it is implicitly assumed that this randomness, as well as all
intermediate states of a computation (such as the sampling process carried out by the dealer) can
be kept private from the other parties. These assumptions may appear uncontroversial but they
are not always realistic in implementations. Some famous attacks on cryptographic systems exploit
weaknesses in random number generation or the leakage of “side information” that is not meant
to be public. In this course we will not concern ourselves with such issues: We will assume that
parties have access to private uniform independent random bits and that they can carry out their
computations in private without leaking any extraneous information.

The above example illustrates a particular implementation of a secret sharing scheme. Modern
cryptography evaluates the strengths and weaknesses of implementations in the context of security
definitions that precisely describe the requirements of cryptographic systems. A cryptographic
definition typically has two components: A functionality requirement that specifies how the system

2

should behave under proper use, and a security requirement that captures the types of adversarial
behavior that the system must withstand.

The functionality requirement is usually easier to specify. In the context of secret sharing, we can
model the functionality as a pair of algorithms (Share,Rec) for sharing and reconstructing the
secret, respectively.

Definition 1. A secret-sharing scheme for secret alphabet Σ, share alphabet Γ, and n parties is
a pair of algorithms (Share,Rec), where Share is a randomized algorithm that takes an input
s ∈ Σ and outputs shares X1, . . . , Xn ∈ Γ and Rec is an algorithm that takes n inputs from Γ and
produces an output in Σ such that for every s ∈ Σ, Rec(Share(s)) = s with probability one.

In the above example, the sharing procedure is described explicitly but the reconstruction procedure
is not. One simple implementation is Rec(x1, x2, x3) = x1 + x2 + x3 mod 2.

2 Indistinguishability and simulatability

The security requirement should capture the condition that any proper subset of the parties does not
“know” the secret. At the very least this means the secret cannot be recovered by an unauthorized
subset of parties. But should we allow some partial leakage of information, for example should the
parties be allowed to tell in the absence of prior information) that the secret bit is 60% likely to be
a 1 and 40% likely to be a 0?

Cryptographic security definitions disallow even such partial release of unauthorized information.
One reason is that while the effect of a single leak might not be particularly harmful, cryptographic
systems are often used many times and the composed effect of multiple leaks might lead to a
complete break. It is preferable to disallow this possibility. In the context of secret sharing security,
this means proper subsets of the parties should not find out any information about the secret.

In cryptography there are two useful paradigms for capturing the absence of information: indistin-
guishability and simulatability.

Indistinguishability-based security definitions compare the adversary’s views of the system under
different instantiations of the secret information. If the adversary cannot tell apart any two such
views then he learns no information about the secret. For secret sharing this means the following:

Definition 2. A secret sharing scheme is IND-secure if for every proper subset S of parties and for
every two secrets s, s′ the random variables (Xi)i∈S and (X ′i)i∈S are identically distributed, where
(X1, . . . , Xn) and (X ′1, . . . , X

′
n) are the outputs of Share(s) and Share(s′), respectively.

Here, the notation (Xi)i∈S denotes the collection of random variables Xi for all i ∈ S under some
canonical ordering, e.g., (Xi)i∈{2,3,5} = (X2, X3, X5). In words, the joint view of any proper subset
of the parties is identical regardless of the value of the secret.

The simulation paradigm describes “absence of information” by requiring that whatever the adver-
sary can observe in the actual run of the system, he can simulate on his own without knowledge
of the secret information. Therefore anything he learns must be independent of the secret. In
the context of secret sharing, the adversary observes the joint distribution of shares (Xi)i∈S . The
definition requires that he can sample from this distribution without knowing the secret:

Definition 3. A secret sharing scheme is SIM-secure if for every proper subset S of parties there
exists a randomized algorithm SimS (that knows S but takes no additional inputs) such that for
every secret s, the output of SimS is identically distributed to (Xi)i∈S , where (X1, . . . , Xn) is the
output of Share(s).

3

In the case of secret sharing the two definitions are equivalent:

Proposition 4. A secret sharing scheme is IND-secure if and only if it is SIM-secure.

Proof. First let us assume that (Share,Rec) is IND-secure. We show that it is SIM-secure. The
algorithm SimS runs Share(s0) for some arbitrary but fixed value of the secret s0 ∈ Σ and out-
puts the collection of shares indexed by the parties in S. By IND-security, for any input s, the
distribution of the outputs of Share(s) indexed by the parties in S is identical to the output of the
simulator, so the scheme is SIM-secure.

Now suppose (Share,Rec) is SIM-secure. Then for every proper S the distributions of the random
variables (Xi)i∈S and (X ′i)i∈S in Definition 2 are both identical to the output distribution of SimS ,
so they are identical to one another. Therefore (Share,Rec) is IND-secure.

Since IND-security and SIM-security are equivalent, we’ll call a secret sharing scheme that satisfies
either definition secure. We now construct a secret sharing scheme for one-bit secrets and prove
its security. The algorithm Share(s) samples the string X1X2 · · ·Xn uniformly at random from
{0, 1}n conditioned on X1+ · · ·+Xn = s mod 2 and assigns share Xi to party i. The reconstruction
algorithm outputs Rec(x1, . . . , xn) = x1 + · · ·+ xn mod 2.

Theorem 5. (Share,Rec) is a secure secret sharing scheme with alphabets Σ = Γ = {0, 1}.

Proof. The functionality requirement Rec(Share(s)) = s for all s is clearly satisfied. We show
SIM-security. For every set S, the simulator SimS outputs uniform independent random bits, one
for every party in S. To prove security we need to argue that for every proper subset S the random
variables (Xi)i∈S are uniform and independent even when conditioned on X1 + · · ·+Xn = s mod 2.
This is true because for every possible fixing of the variables (Xi)i∈S there are exactly 2n−|S|−1

possible assignments to the other variables (Xi)i 6∈S that satisfy the equation X1+· · ·+Xn = s mod 2,
so all assignments to (Xi)i∈S are equally likely to occur.

Now that we have a secret sharing scheme for single-bit secrets we can extend it to obtain one for
arbitrarily long secrets by applying it independently to each bit of the secret. More precisely, given
a long secret s1 · · · sk ∈ {0, 1}k, the algorithm Share′(s1 · · · sk) applies Share(s1), · · · , Share(sk)
using independent randomness and gives party i the collection of the i-th shares produced by these
k executions. To recover the i-th bit, the reconstruction algorithm Rec′ applies Rec to the i-th bit of
the share given to all the parties. The proof of security should be straightforward but notationally
tedious so I will omit it.

Theorem 6. (Share′, Rec′) is a secure secret sharing scheme with alphabets Σ = Γ = {0, 1}k.

3 Threshold secret sharing and cryptographic games

A client can use the scheme from Theorem 6 to store a k-bit file on a collection of n ≥ 2 servers
with the following guarantees: No proper subset of the servers obtains any information about the
file, but the client can reconstruct the file after communicating with all the servers. What if some
of the servers break down? It may be desirable that the client can still reconstruct her file from
the remaining data. A solution that comes to mind is a variant of secret sharing in which not all
n parties are required participate in the reconstruction, but some lower threshold r is sufficient.

We will describe the relevant requirements using the notion of a game. This is an imagined execution
of a cryptographic protocol which, in addition to the honest parties, involves an adversary who

4

intends to derail the correct execution or find out some forbidden information. In the example of
secret reconstruction with some of the shares missing the adversary might operate according to the
following game.

Erasure game with threshold r

1. Adversary chooses a secret s ∈ Σ and submits it to the protocol.

2. Protocol runs Share(s) to output sequence of shares X1, . . . , Xn ∈ Γ.

3. Adversary looks at X1, . . . , Xn and replaces at most n− r of them with the special symbol ⊥
(indicating a missing share), obtaining a sequence X̃1, . . . , X̃n.

4. Protocol runs Rec(X̃1, . . . , X̃n) and outputs s̃ ∈ Σ.

The parameter r in the erasure game quantifies the minimal number of shares that the adversary
must leave intact for reconstruction to possibly succeed; apart from that we make no assumption
on the adversary’s operation. In this game, the adversary’s decision on which shares to erase may
even depend on the joint value of all the shares.

Definition 7. The secret sharing scheme (Share,Rec) is an r-threshold scheme if for every adver-
sary in the erasure game, the protocol output s̃ equals the secret s with probability one.

Definition 7 combines a functionality requirement (correct reconstruction) and a security require-
ment (resilience to erasures). How do these relate to the security notions from Definitions 2 and 3,
which concern leakage of information by subsets of the parties? Since in r-threshold schemes any
r parties have enough information to reconstruct the secret, IND-security and SIM-security can
possibly hold only against subsets of size r − 1 or less.

Definition 8. An r-threshold scheme is secure if it satisfies Definition 3 (equivalently, Definition 2)
but only when applied to subsets S of size less than r.

Now that we have all the definitions in place we can describe a solution that satsifies all the
requirements.

Theorem 9. There exists an r-threshold secret sharing scheme for every n, every 1 ≤ r ≤ n, and
every alphabet size |Σ| = |Γ| that is larger than n and is the power of a prime number.

Proof. We identify the alphabets Σ and Γ with the finite field Fq, where q is the power of a prime
number larger than n. (If q is a power of two then both the secret and the shares are bit sequences.)
We also fix n arbitrary distinct elements a1, . . . , an ∈ Fq, all different from zero.

To share a secret s, the dealer samples a random polynomial p of degree r− 1 over Fq conditioned
on p(0) = s. One way to do so is to pick uniformly random coefficients s1, s2, . . . , sr−1 from Fq and
set p(x) = s + s1x + s2x

2 + · · ·+ sr−1x
r−1. The share sent to party i is the value p(ai) ∈ Fq.

On input x1, . . . , xn the reconstruction procedure ignores the missing shares and computes a poly-
nomial p̃ of degree r − 1 such that p̃(ai) = xi for all the remaining shares. If at least r shares are
provided, p and p̃ are both polynomials of degree at most r − 1 whose values agree on r inputs, so
they must be the same polynomial (because their difference p − p̃ can have at most r − 1 roots).
The reconstruction procedure outputs s̃ = p̃(0). Since p and p̃ are the same polynomial, s̃ must
equal s, proving that this is an r-threshold scheme.

We now argue SIM-security. Without loss of generality it is enough to handle subsets S of exactly
r − 1 parties. The simulator SimS outputs uniformly random Fq-elements for all parties in S. We

5

need to prove that this distribution is identical to the distribution of the actual shares of the parties
in S. These parties observe the values Xi = p(ai) for all i ∈ S, where p is a random degree-(r − 1)
polynomial subject to p(0) = s. Since a polynomial of degree r − 1 is uniquely determined by its
values on any set of r inputs, there is exactly one choice of p that satisfies the conditions p(0) = s
and p(ai) = Xi for all i ∈ S, so all views by the parties in S occur with the same probability
q−r+1.

The proof of Theorem 9 shows the existence of the desired secret sharing scheme, but does not
explicitly describe the reconstruction algorithm, namely the procedure that reconstructs the poly-
nomial p from its evaluations p(ai). The polynomial can be recovered by solving a system of linear
equations in which the unknowns are the coefficients. Alternatively, the value p(0) can be calculated
directly by the Lagrange interpolation formula

p(0) =
∑
i

p(ai)
∏
j 6=i

ai
ai − aj

where the sum ranges over the indices i for which the value p(ai) was not erased.

4 Encryption

Going back to secure file storage, what happens if the client wants to store her file on a single
server? It appears that the client should be forced to reveal the whole file to the server. But what
if the client is allowed to keep a small amount of local information—a secret key—that would help
her encode the file so it is unintelligible to the server but readable by herself?

This is the problem of encryption: Alice wants to send a message to Bob in a way that keeps the
message secret from Eve. In the above example, Alice and Bob both play the role of the client,
while Eve is the server. Candidate encryption schemes predate computers by millenia.

The Roman emperor Julius Caesar used the following cipher: Shift the position of every letter of
the alphabet by three symbols forward. So a becomes d, b becomes e, and so on. One of Caesar’s
famous quotes is ”I came, I saw, I conquered”, which in his native Latin would have been:

venividivici

(blank spaces omitted), instead he would write

yhqlylglylfl.

Needless to say Caesar’s cipher can be easily broken.1 In fact his scheme has a fundamental flaw
which is unrelated to the specific choice of cipher: it is deterministic, i.e., there is no secret key.
A deterministic encryption scheme can never be useful: If Alice “encrypts” a message to Bob and
Bob can decrypt it, then so can Eve. In the absence of “secret information” possessed by Bob, Eve
can impersonate Bob in any interaction.

Here is a randomized variant of Caesar’s scheme. If we identify the English/Latin alphabet symbols
with the numbers 0 to 25, then Caesar’s cipher is x→ x + 3 mod 26. To decrypt, one applies the
inverse transformation y → y− 3 mod 26. One thing Alice and Bob can do is to agree on a secret
key i ∈ {0, . . . , 25} and apply the encoding x → x + i mod 26 instead. So now the encrypted
message may look like this:

1Perhaps it made some sense to use this cipher in Roman times: If most of the population was illiterate, yet they
could recognize certain words by sight, shifting things a bit may have made it more difficult.

6

nwfanavanaua.

This scheme is somewhat better than the previous one. If Eve now sees a ciphertext sent from Alice
to Bob, she cannot decode it, because she does not know the key. However, she knows that the
ciphertext could have come from at most 26 possible messages. She can now write out the list of
these 26 messages. Chances are at most one of them will make any sense, in which case she has
broken the scheme again.

However, notice that breaking the new cipher requires Eve to do 26 times the amount of work it
took her to break the original one. This suggests that we could make the cipher harder to break by
using a longer key. For example, instead of a one-letter key we could use a four-letter key like this:

venividivici

+ skltskltsklt

noybnsobnsnb

Another scheme could work like this: To obtain the ciphertext, we still substitute symbols one by
one, but instead of a cyclic shift, the public key is now an arbitrary permutation P of the alphabet,
like

x: a b c d e f g h i j k l m n o p q r s t u v w x y z

P (x): l t r e w v s g m q u d f h i o b z x c p y k j a n

and the encoding is obtained by applying the transformation x→ P (x) to each symbol separately.

In general, it seems reasonable that the longer you make the key, the harder it becomes to break
the scheme. In fact, for short messages, these schemes may be difficult to break. However, when
we try to use them to encrypt longer messages, the schemes become easier to break. The message
can be recovered without too much effort, for example, by analyzing the frequency of occurrences
of the different symbols (or pairs or triplets of consecutive symbols) and matching them to the
frequencies in common text.

Even with short messages, the ciphertext could give us various clues about the message. For
example, notice that the second and third block of four letters differs in exactly one position, which
says the same must be true of the plaintext. If the message is a list of directions to the hideaway
of a terrorist, like

leftrightleftleftrightleft

then it should not be hard to convince yourself that in any of these schemes, the message can be
easily recovered. For more examples of historical encryption ciphers and ways to break them take
a look at Chapter 1 of the textbook Introduction to modern cryptography.

Security by obscurity One implicit assumption that we made is that the encryption and de-
cryption algorithms – the procedures used to encode and decode messages – are public and therefore
known to the adversary. Shouldn’t we be able to achieve better security by keeping the algorithms
hidden from the adversary?

Most cryptographers believe that, in fact, the opposite is true: We can only gain more confidence
in the security of the scheme by making its description public. In practice, this will invite more
people to study the scheme and uncover its vulnerabilities. As a consequence, if after a long period

7

of study no vulnerabilities are found, this should give us more confidence that the scheme is indeed
secure.

A historical example of a “secret” encryption scheme are the enigma codes used by the German
military in the 1930s. This scheme was implemented by an elaborate machine whose mode of
operation was kept secret. It took years to break it by a group of Polish crackers. In World War
II a new version was deployed, but this one was broken too by scientists in Britain including Alan
Turing.

A more technical reason, at least in private-key cryptography, is that essentially nothing is gained
by making the algorithms of the scheme secret, as the description (i.e. the code) of these algorithms
can always be provided as part of the private key.

5 The one-time pad

If we want to improve the security of encryption, using longer keys seems like a good idea. Taken
at an extreme, if Alice and Bob have a random key K that is as long as the message M to be
communicated, Alice can encode M using the one-time pad

C = M + K = (M1 + K1, . . . ,Mk + Kk)

where you can think of M and K as k-bit strings and addition as bitwise XOR. To recover the
message Bob computes C + K = M . This scheme should be impossible to break: Eve can observe
the string C = M + K, and because K is random, from Eve’s point of view, the ciphertext is
statistically independent of the message. Alternatively, Eve can simulate her view in the interaction
between Alice and Bob (without knowing K) by generating a truly random string C.

The one-time pad requires Alice and Bob to agree on a key that is as long as the message they
are planning to exchange. This key is not reusable, If Alice wants to send a different message to
Bob, she must use a different key. In effect, this requires Alice and Bob to agree in advance on
a key which is as long as the length of the messages they are ever going to exchange. This is
impractical in many applications. Even if a method of distributing the keys can be arranged (say
by physically shipping them, which has been done in the past), it may be difficult to get hold of
enough randomness to generate such long keys.

Can we get away with using shorter keys? If the objective is to have a ciphertext that is statistically
independent of the message, then the answer is no. The intuitive reason is that the key has fewer
“bits of information” than the message, so the ciphertext cannot hide the message completely.

Here is a way to make this reasoning more rigorous: Suppose Alice wants to send an m-bit message
to Bob, but they have only exchanged a key of length k. There are 2m possible messages, and they
can be encoded using 2k different keys. So any ciphertext C could have arisen from at most 2k

different messages. Let M be one of these messages. Since k < m, there must be some message M ′

that does not encode to c under any key. So from the perspective of Eve, the ciphertexts of M and
M ′ are distinguishable: While M can be encrypted into C with some probability (over the choice
of key), M ′ can never be encrypted to C.2

But perhaps we do not need to worry so much: Although in principle Eve can always distinguish
the encryptions of M and M ′, in practice it may be very difficult for her to do so. Perhaps the
only way to figure out if C can arise as the encryption of a message M is to go over all possible

2This argument assumes that the encryption and decryption algorithms are deterministic, while in practice they
can be randomized. It can be extended to handle randomized algorithms.

8

keys and check if any of them works. This would take an amount of work proportional to 2k, which
even for reasonably small values of k, say k = 128, is forbiddingly large.

In conclusion, even though we cannot achieve perfect security when the key is shorter than the
message, there is hope: Eve may not be able to break the encryption simply because it takes too
much work for her to do so.

6 Definitions of encryption and security

We now define encryption, starting with the functionality requirement:

Definition 10. A private-key encryption scheme for messages of length m and key length k is a
pair of algorithms (Enc,Dec) such that for every key K of length k and message M of length m,
Dec(K,Enc(K,M)) = M .

We now want to define security. Here is the indistinguishability-based definition:

Definition 11. (Enc,Dec) is perfectly secure if for every k and every pair of messages M,M ′ of
length m, the random variables Enc(K,M) and Enc(K,M ′) are identically distributed, where K
is chosen uniformly at random from {0, 1}k.

Eve

M

M ′

C = Enc(K,M)K
Dec(K,C)Alice Bob

C ′ = Enc(K,M ′)

K
Dec(K,C ′)Alice Bob

Figure 1: The (in)distinguishability game for private-key encryption.

As we discovered, if a private-key encryption scheme is perfectly secure, then k ≥ m. We will now
consider ways to relax the definition of perfect security in a way that may allow us to bypass this
restriction.

One thing we can do is relax the requirement that the two distributions are identical. Instead, we
can merely require that they are close to one another. What does it mean for two distributions
to be close? There are various measures of distance between distributions, but the one that is
most relevant for us is statistical distance. Two distributions are statistically close if no observer
can distinguish samples coming from one distribution and samples coming from the other one with
good confidence.

Definition 12. Random variables X and X ′ are ε-statistically close if for every function D that
outputs 0 or 1, |Pr[D(X) = 1]− Pr[D(X ′) = 1]| ≤ ε.

We think of the function D as a distinguisher: It tries to tell apart the random variables X and X ′

as well as it can. Perfect security requires that for every pair of messages M and M ′ the random
variables X = Enc(K,M) and X ′ = Enc(K,M ′) are perfectly indistinguishable (i.e., 0-statistically

9

close). What if we relax this impossible to satisfy requirement to, say, ε = 0.01? It turns out that
it is still impossible to achieve: As long as the key is shorter than the message, there will at least
two messages M and M ′ so that the statistical distance between Enc(K,M) and Enc(K,M ′) is
at least 1/2. In the next lecture we will consider a further relaxation of this definition that makes
encryption with short keys possible.

10

	Secret sharing
	Indistinguishability and simulatability
	Threshold secret sharing and cryptographic games
	Encryption
	The one-time pad
	Definitions of encryption and security

