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Identification schemes are mechanisms for Alice to prove her identity to Bob. They comprise a
setup phase in which some public or private information is shared between Alice and Bob and an
identification protocol in which Alice’s identity is established. The setup phase occurs, for example,
when you register a password to a new website, or when you buy a new Octopus card. Identification
occurs when you login or you swipe your Octopus.

In our study of encryption we were mainly concerned with passive adversaries. Eve could listen in
to messages sent by Alice and Bob at will with the intent of learning forbidden information but she
couldn’t affect the communication.1 To obtain reasonably secure identification we need to consider
active adversaries—ones that can pretend to be Alice and/or Bob.

You are all familiar with password-based schemes. The secret information there is a password
typically chosen by Alice. The identification consists of Alice sending her password or some function
of it to Bob. One advantage of password-based schemes is that they are non-interactive; the protocol
consists of just one message.

The security guarantees of passwords are quite weak. Because identification is deterministic, after
observing a single interaction Eve can impersonate Alice. Eve can also steal Alice’s password by
impersonating Bob, namely engaging in a phishing attack. In typical scenarios Bob is a server that
stores information about a large collection of passwords. If Eve gains unauthorized access to this
server a lot of these passwords may be compromised. There are various methods for mitigating
such attacks, some of them based on techniques that we will see in later lectures.

In this lecture we consider schemes that satisfy stronger notions of security. We begin with the
secret-key setting. The protocols there are fairly straightforward, but this is a good playground to
practice definitions.

1 Secret-key identification

In a secret-key identification scheme the setup phase consists of a common random choice of a
secret key K ∼ {0, 1}k shared between Alice and Bob. It is standard terminology to call Alice the
Prover and Bob the Verifier: Alice’s job is to prove her identity to Bob, and Bob must verify this.

We model the prover and the verifier as (randomized) interactive circuits P and V . Each of them
takes the secret key as input. The interaction consists of a sequence of messages exchanged between
P and V . The protocol specifies the number of the messages, their direction,2 as well as the length
of each message. In the end the verifier produces a single output: accept if identification was
successful, reject if not.

Definition 1. (P, V ) is a secret-key identification protocol if upon interacting with V (K), P (K)
accepts with probability 1.

A password protocol can be described as a one-message protocol: On input K, V sends the message
K. The prover accepts if he received the message K and rejects otherwise.

Now consider an cheating prover P ∗ that wants to impersonate the honest prover Alice but without
knowing the secret key. Whichever message P ∗ sends will be independent of the secret key K, so

1One exception is the chosen plaintext attack, in which Eve had control over the messages being encrypted.
2We can assume that directions alternate, so it is sufficient to specify the direction of the first message.

1



the prover will accept it with probability 2−k. This is the chance of P ∗ guessing the secret key by
chance. However, if P ∗ observes even a single interaction between Alice and Bob his chances of
impersonating Alice jump to one.

This type of eavesdropping attack can be modeled by a two-phase game (see Figure ?? (a)). In the
learning phase, the adversary observes some number q of independent transcripts3 between P (K)
and V (K). In the validation phase, the adversary plays a cheating prover P ∗: He must follow the
format of the protocol from the prover’s perspective, but can send messages of his choice. The
advantage of the cheating prover in this game is the probability that the (honest) verifier V (K)
accepts this interaction.

Definition 2. (P, V ) is (s, q, ε)-secure against eavesdropping if for every P ∗ of size at most s, after
observing q interactions, the probability that P ∗ wins the eavesdropping game is at most ε.

The eavesdropping attack looks quite similar to the learning protocol from Lecture 2. The cheating
prover is in fact trying to learn how to imitate an honest prover so he can pass validation. To prevent
the learner from succeeding it is natural to use a pseudorandom function FK : {0, 1}n → {0, 1}m.

Challenge-response protocol:

1. Verifier chooses a random challenge X ∼ {0, 1}n and sends it to the verifier.

2. Prover responds with Y = FK(X).

3. Verifier accepts if Y equals FK(X).

Theorem 3. If F is (s, q, ε)-hard to learn then the challenge-response protocol is (s, q, ε+ (q + 1) ·
2−m)-secure against eavesdropping attacks.

By (s, q, ε)-hard to learn I mean that the advantage of the best q-query, size s-learner over randomly
guessing the value FK(X) when tested on X is at most ε.

Proof. Suppose that some P ∗ wins the eavesdropping game with probability ε∗. To win the learning
game, P ∗ must correctly predict FK(X) for some X that is different from all q that it has seen
during the learning phase. Since the verifier issues independent challenges, the probability that
this does not happen is at most q · 2−m. Therefore P ∗ wins the learning game with probability at
least ε∗− q ·2−m. Its advantage over random of predicting FK(X) is ε∗− (q+ 1) ·2−m, so F cannot
be (s, q, ε∗ − (q + 1) · 2−m)-hard to learn.

There is a more powerful type of attack in which the adversary actively impersonates the verifier (see
Figure ?? (b)). This adversary can do more than just observe honest prover-verifier interactions; he
controls the messages produced by the verifier. An impersonation game also consists of two phases.
In the learning phase, the adversary plays a cheating verifier that participates in q interactions
with the honest prover, sending messages of his choice. In the validation phase, the adversary
can use the information learned from these interactions to identify himself to the honest verifier.
The adversary’s advantage is the probability that he is validated. Phishing scams in which a fake
website V ∗ tries to steal users’ credentials fit into this model.

The challenge-response protocol is secure even against impersonation attacks: Theorem ?? remains
true if we replace the word “eavesdropping” by “impersonation”. If an adversary controls the
verifier’s challenges in the learning phase, he cannot learn the pseudorandom function FK with any
higher advantage than what we showed in the proof of Theorem ??.

3The transcript is the sequence of messages exchanged between P and V . When P or V take random inputs, like
a shared key, the transcript is a random variable.
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Figure 1: Identification attacks: (a) eavesdropping; (b) impersonation; (c) man-in-the-middle. The learning
and validation phases are separated by the dashed line.

The most powerful adversary is a man in the middle who can alternate between playing prover
and verifier roles throughout the execution of the protocol (see Figure ?? (c)). Identification that
is secure against man-in-the-middle attacks is impossible unless additional assumptions are made
about the underlying communication model.

2 Public-key identification

In public-key identification, during the setup phase the prover generates a key pair: A secret key
SK that she gets to keep and a public key PK that is published to the verifier and any potential
adversaries. The functionality requirement is that upon interacting with the verifier V (PK), the
prover P (SK) accepts with probability one. Since the only distinguishing feature of the prover is
her public key, a public-key identification protocol is a proof of knowledge: Alice has to prove to
Bob that she knows her corresponding secret key.

Just like in the private-key setting, we can define eavesdropping and impersonation attacks. The
difference here is that the adversary also knows the public key PK. To achieve this, our strategy
will be to prevent the adversary from learning anything about the secret key. Since we don’t know
a public-key equivalent of pseudorandom function, we’ll try to make use of its close relative, namely
encryption. Let (Gen,Enc,Dec) be a public-key encryption scheme.

Public key challenge-response protocol:

1. Verifier chooses a random message M ∼ {0, 1}m and sends the encryption C = Enc(PK,M).

2. Upon receiving C, Prover decrypts and responds with M ′ = Dec(SK,M).

3. Verifier accepts if M ′ = M .

The protocol is clearly functional as long the underlying encryption scheme is. It is also secure
against eavesdropping attacks: In the learning phase, an eavesdropper observes some encryptions
and decryptions of various random messages. This is information that he can simulate on his own.

Claim 4. If the encryption scheme is (s, ε)-message simulatability then the public-key challenge-
response protocol is (s− qt−O(m), q, ε+ 2−m)-secure against eavesdropping for every q, where t is
the size of the encryption circuit.

Proof. In each round of the learning phase, the eavesdropper observes encryptions of their messages
and their decryptions, namely the messages themselves. In the validation phase, he gets a challenge
Enc(PK,M). The eavesdropper’s view is the random variable

(PK,Enc(PK,M1),M1, . . . , Enc(PK,Mq),Mq, Enc(PK,M)).
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The pairs (Mi, Enc(PK,Mi)) can be sampled by running the encryption circuit, so they can be
excluded from the eavesdropper’s view at a cost of qt in size. Suppose this simplified eavesdropper
A of size s−O(m) can guess M with advantage better than desired, namely

Pr[A(PK,Enc(PK,M)) = M ] > ε + 2−m.

Then A effectively decrypts random messages. This contradicts message simulatability: The output
of every potential simulator Sim is independent of M , so

Pr[A(PK,Sim(PK)) = M ] ≤ 2−m.

Therefore (PK,Enc(PK,M),M) and (PK,Sim(PK),M) are (s, ε)-distinguishable. (The O(m)
extra gates are for the equality.) This must hold for some fixed value of M , so (PK,Enc(PK,M))
and (PK,Sim(PK)) are also (s, ε) distinguishable for this M , contradicting simulatability.

Impersonation attacks are a different story. During the learning phase, the cheating verifier V ∗ has
effective access to a decryption oracle: He can ask the prover to decrypt messages of his choice, not
only random ones. We have not yet considered such adversaries against encryption.

To get a sense of what impersonation attacks on the challenge-response protocol can do, let us
consider the case of El Gamal encryption. Recall that the key pair is (SK = X,PK = gX) and an
encryption of M has the form (gR, gXR ·M). The adversary can ask, for instance, for a decryption
of the message (PK, 1) = (gX , 1). Since the only message that encrypts to this ciphertext is g−X

2
,

the prover is obliged to produce this answer. So the adversary learns the power gX
2

of the square
of the secret key; it is unclear how he could have calculated this value on his own without taking
the discrete logarithm of the public key.

In conclusion, an adversary with access to a decryption oracle can potentially learn information
that may be impossible to simulate efficiently. While it is not clear if this “knowledge” can help
him mount an effective impersonation attack in this El Gamal-based challenge-response, it is not
difficult to construct related examples in which challenge-response is insecure against impersonation
even though the underlying encryption scheme is message-indistinguishable.

3 Schnorr’s protocol

Schnorr proposed the following ingenious variation on El Gamal-based challenge-response. As usual
G is a multiplicative group generated by g. The secret key is a random X from Zq and the public
key is gX .

Schnorr’s identification protocol:

1. Prover chooses a random R ∼ Zq (the commitment) and sends h = gR to the prover.

2. Verifier sends a random bit C ∼ {0, 1} to the prover.

3. Prover responds with Y = R + CX.

4. Verifier accepts if gY = h · PKC .

In a correct execution of the protocol, the verification equation is gR+CX = gR · (gX)C . This is an
identity so Schnorr’s protocol is a legitimate identification protocol.
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We will shortly look into the security of Schnorr’s protocol against impersonation attacks. To gain
some intuition let us first deal with the seemingly easier eavesdropping attacks. We’ll assume that
discrete logarithms base g are hard to calculate.

The view of the adversary consists of the public key PK = gX , the observed transcript (gR, C,R+
CX) for all queries in the learning phase and the messages received by the verifier in the validation
phase.

Each observed interaction in the learning phase can be simulated by picking the prover’s response
before his commitment: The simulator S(PK) chooses a random C ∼ {0, 1} and Y ∼ Zq and
outputs (gY · PK−C , C, Y ). Since the joint distribution of (C,R + CX) is uniform, (PK,C, Y )
and (PK,C,R + CX) are identically distributed. The remaining variables gR and gY · PK−C are
deterministic functions of the rest and they are equal under the given change of variables. So the
simulated transcript is identical to the original one. Just like in the proof of Claim ??, we can omit
the learning phase transcript from the eavesdropper’s view at an additional cost of running this
simulator q times.

In the validation phase, the cheating prover can choose any commitment h of his choice, not
necessarily a random one. His commitment may even depend on the public key. Similarly, his
response Y can be arbitrary. Yet, if he passes validation with advantage ε, for any choice of h and
Y that he makes, it must be true that

Pr[gY = h · PKC ] ≥ ε.

Now consider two correlated executions of the impersonation game that are identical up to step 2
(namely, the public key and the prover’s first message are the same). In step 2, the verifier responds
with two independent challenges C and C ′. From here on, the two executions are (conditionally)
independent. In step 3 the prover retorts with Y and Y ′, respectively. The probability that the
verifier passes validation in both executions is

Pr[gY = h · PKC and gY
′

= h · PKC′
] = E

[
PrC,C′ [gY = h · PKC and gY

′
= h · PKC′

]
]

= E
[
PrC [gY = h · PKC ] · PrC′ [gY

′
= h · PKC′

]
]

= E
[
PrC [gY = h · PKC ]2

]
.

The first equation says that the probability that both executions validate can be calculated in two
stages. First we fix all the randomness chosen before step two and then calculate the probability
that from then on, for the random choices of C and C ′, both executions validate. Then we average
over the remaining randomness.

The second equation says that because the events gY = h·PKC and gY = h·PKC′
are independent

conditioned on everything but the choice of C and C ′, the probability that they both occur is the
product of their probabilities. The third equation says that these are the same because (C, Y ) and
(C ′, Y ′) are identically distributed.

The Cauchy-Schwarz inequality says that the average of a square is always at least as large as the
square of an average, so

Pr[gY = h · PKC and gY
′

= h · PKC′
] ≥ E

[
PrC [gY = h · PKC ]

]2
= Pr[gY = h · PKC ]2 ≥ ε2.

In words, with probability ε2 both of the following equations are satisfied:

gY = h · PKC

gY
′

= h · PKC′
.

(1)
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Your natural instinct should lead you to solve this system of equations. You cancel h to obtain
gY−Y

′
= PKC′−C , and because the exponents form a group modulo a prime q, division in the

exponent is allowed to get:
PK = g(Y−Y

′)/(C′−C).

In words, (Y − Y ′)/(C ′ − C) is the discrete log of the public key. In summary, we applied the
adversary on two correlated executions of Schnorr’s protocol to calculate a discrete log. So the
adversary cannot be efficient!

There is, unfortunately, an annoyance: C and C ′ are equal with probability half, in which case
division is not allowed (and the two equations in (??) are the same). This is a symptom of a real
problem: A cheating prover can, in fact, pass validation with probability 50%. This prover banks
on the event that the challenge C is equal to zero. In this case, he does not need to know anything
about the secret key. In step 3 he simply responds with R and is validated with flying colors!

Schnorr’s protocol can be salvaged if the verifier’s challenge C is chosen from a larger space. The
security argument we just described remains valid even if C is uniformly random modulo q. The
probability that C and C ′ are equal is then as small as 1/q.

Schnorr’s protocol with long challenges: Like Schnorr, except C is uniformly random in Zq.

Theorem 5. If discrete logs in base g are (s, ε)-hard to find then Schnorr’s protocol with long
challenges is (s/2− t′/2− q′t, q′,

√
ε + 1/q)-secure4 against eavesdropping, where t is the size of the

above simulator S, and t′ is the size of two subtractions and one division in G.

Proof. By our discussion so far, if the eavesdropping game against Schnorr’s protocol can be won
with advantage ε∗ by size s∗ then there is an adversary of size s∗ + q′t so that two correlated
runs of this adversary’s interaction with the verifier produce messages C, Y,C ′, Y ′ that satisfy the
system (??). The value (Y −Y ′)/(C ′−C) equals the discrete log of gX as long as C ′ and C are not
equal, an event of probability 1/q. So discrete logs can be computed with probability ε = (ε∗)2−1/q
by size s = 2(s∗ + q′t) + t′.

Like El Gamal-based challenge-response, Schnorr’s protocol with long challenges is not known to
be secure against impersonation attacks but is also not known to be insecure.

4 Simulation of cheating verifiers

To obtain security against impersonators we go back to the vanilla Schnorr protocol. An analogue of
Theorem ?? still holds but the probability that the cheating prover passes the test can be bounded
only by

√
1/2 + ε, which is rather high. We saw that it is rather easy for the prover to cheat with

probability half.

A natural way to improve security is to repeat Schnorr’s protocol independently many times. If the
cheating prover can pass validation with probability, say, 3/4, we would expect that the chances
that he passes the test t times should drop to (3/4)t. This is indeed the case for eavesdropping
attacks as long as the repetitions are carried out sequentially.

How about impersonation attacks? In the learning phase, the impersonator plays a cheating verifier
V ∗. In each round, V ∗ can choose the value of the challenge bit C∗ ∈ {0, 1} based on any previous
information it has gained.

4We use q′ for the number of rounds because q is taken for group size.
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Let us start by looking at a single round of interaction between V ∗ and the honest prover. V ∗’s
view consists of the public key PK = gX and the pair of messages gR and R + C∗X. This is
summarized in the triple (gX , gR, R+C∗X). The challenge C∗ may not be random; V ∗ can bias it
or even make it depend on gX and gR.

The objective is to simulate this view given the public key PK = gX . Although the simulator has
no control over the value of C∗, she still knows that V ∗’s view is some combination of two random
variables, each of them sampleable without knowing the secret key:

(gX , gR, R + C∗X) is distributed as

{
(PK, gY , Y ), if C∗ = 0

(PK, gY · PK−1, Y ), if C∗ = 1

for a uniformly random Y ∼ Zq. The simulator does not ahead of time what the value of C∗ will
be, but if she guesses it at random his guess will be correct with probability half. In the case that
the simulator was incorrect, she can try again.

Simulator for Schnorr’s protocol:

0. Choose a random bit C ∼ {0, 1} and a random Y from Zq.

1. Playing the role of the prover in Schnorr’s protocol, send V ∗ the message h = gY · PK−C .

2. If V ∗ responds with C, output (PK, h, Y ). If not, try again.

Conditioned on C = C∗, the output of the cut-choose simulator is identical to V ∗’s view when
interacting with the (honest) prover. Since h is independent of C and PK, C∗ must be independent
of C so C and C∗ are equal with probability exactly 1/2. The simulator therefore terminates within
r rounds with probability 1− 2−r.

Lemma 6. The simulator terminated after at most r repetitions outputs a view that is (∞, 2−r)-
indistinguishable from V ∗ view when interacting with the honest prover.

Lemma ?? generalizes to impersonation attacks with many rounds of interaction by sequentially
composing the simulators. For a q′-round interaction the distinguishing probability drops to q′ ·2−r.
In conclusion, the impersonation attack against Schnorr’s protocol has only a tiny advantage of
q′ ·2−r over the eavesdropping attack. Schnorr’s protocol, repeated sufficiently many times, remains
secure against impersonation.
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