Problem 1

Let $G:\{0,1\}^{k} \rightarrow\{0,1\}^{4 k}$ be an (s, ε) pseudorandom generator. Consider the following bit commitment protocol. Here, Alice gets no input, and Bob gets input $b \in\{0,1\}$:

A: Choose a random $R \in\{0,1\}^{4 k}$ and send it to Bob.
B: (Commitment phase) Upon receiving R^{\prime}, choose a random $K \in\{0,1\}^{k}$. To commit to $b=0$, send $G(K)$. To commit to $b=1$, send $G(K)+R^{\prime}$.
A : Receive the commitment C^{\prime}.
B: (Revealment phase) Send K and the committed bit b to Alice.
A: If $C^{\prime}=G\left(K^{\prime}\right)$ and $b^{\prime}=0$ or $C^{\prime}=G\left(K^{\prime}\right)+R$ and $b^{\prime}=1$, accept; otherwise, output error.
This is a bit different from the commitment scheme we say in class because it is interactive: Alice has to send a message to Bob before Bob does his commitment and revealment.
(a) Show that if Alice is honest, the scheme has the following binding property: For every B^{*},

$$
\operatorname{Pr}_{R \sim\{0,1\}^{4 k}}\left[A \text { accepts and } b^{\prime} \neq b\right]=2^{-\Omega(k)} .
$$

(b) Show that if Bob is honest, the scheme has the following hiding property: For every A^{*} of size at most s^{\prime},

$$
\mid \operatorname{Pr}_{\left(A^{*}, B(b)\right)}\left[A^{*} \text { accepts } \mid b=0\right]-\operatorname{Pr}_{\left(A^{*}, B(b)\right)}\left[A^{*} \text { accepts } \mid b=1\right] \mid \leq \varepsilon^{\prime}
$$

(for a suitable choice of s^{\prime} and ε^{\prime}).
(c) Can you extend this protocol so that Bob can commit not only to a single bit, but to any value in the set $\{0,1\}^{k}$?

Problem 2

Let p, q be prime numbers where $(p-1) / 2$ and $(q-1) / 2$ are odd and let $n=p q$. Suppose Alice holds some $a \in \mathbb{Z}_{n}^{*}$ and Bob has an x such that $x^{2}=a$. Bob wants to prove to Alice that a is a quadratic residue. Consider the following protocol:
B : Choose a random $r \in \mathbb{Z}_{n}^{*}$ and send r^{2} to Alice.
A : Upon receiving b, choose a random message $\{\mathrm{b}, \mathrm{ab}\}$ and send it to Bob.
B : If you receive b , send r; if you receive ab , send $x r$.
A : Upon receiving z : If you sent b , accept if $z^{2}=b$; if you sent ab , accept if $z^{2}=a b$; reject otherwise.

Show that this protocol is zero-knowledge for the proof relation $Q R$ given by

$$
((n, a), x) \in Q R \quad \text { if } \quad a=x^{2} \text {, where } a, x \in \mathbb{Z}_{n}^{*}
$$

Calculate the simulation overhead of this protocol.

