Problem 1

Let $G: \{0,1\}^k \to \{0,1\}^{4k}$ be an (s,ε) pseudorandom generator. Consider the following bit commitment protocol. Here, Alice gets no input, and Bob gets input $b \in \{0,1\}$:

- A: Choose a random $R \in \{0, 1\}^{4k}$ and send it to Bob.
- B: (Commitment phase) Upon receiving R', choose a random $K \in \{0,1\}^k$. To commit to b = 0, send G(K). To commit to b = 1, send G(K) + R'.
- A: Receive the commitment C'.
- B: (Revealment phase) Send K and the committed bit b to Alice.
- A: If C' = G(K') and b' = 0 or C' = G(K') + R and b' = 1, accept; otherwise, output error.

This is a bit different from the commitment scheme we say in class because it is interactive: Alice has to send a message to Bob before Bob does his commitment and revealment.

(a) Show that if Alice is honest, the scheme has the following binding property: For every B^* ,

 $\Pr_{B \sim \{0,1\}^{4k}}[A \text{ accepts and } b' \neq b] = 2^{-\Omega(k)}.$

(b) Show that if Bob is honest, the scheme has the following hiding property: For every A^* of size at most s',

 $\left| \Pr_{(A^*, B(b))}[A^* \text{ accepts } \mid b = 0] - \Pr_{(A^*, B(b))}[A^* \text{ accepts } \mid b = 1] \right| \leq \varepsilon'$

(for a suitable choice of s' and ε').

(c) Can you extend this protocol so that Bob can commit not only to a single bit, but to any value in the set $\{0,1\}^k$?

Problem 2

Let p, q be prime numbers where (p-1)/2 and (q-1)/2 are odd and let n = pq. Suppose Alice holds some $a \in \mathbb{Z}_n^*$ and Bob has an x such that $x^2 = a$. Bob wants to prove to Alice that a is a quadratic residue. Consider the following protocol:

- B: Choose a random $r \in \mathbb{Z}_n^*$ and send r^2 to Alice.
- A: Upon receiving b, choose a random message $\{b, ab\}$ and send it to Bob.
- B: If you receive **b**, send r; if you receive **ab**, send xr.
- A: Upon receiving z: If you sent b, accept if $z^2 = b$; if you sent ab, accept if $z^2 = ab$; reject otherwise.

Show that this protocol is zero-knowledge for the proof relation QR given by

 $((n,a),x) \in QR$ if $a = x^2$, where $a, x \in \mathbb{Z}_n^*$.

Calculate the simulation overhead of this protocol.