
CSCI 5440: Cryptography Lecture 10
The Chinese University of Hong Kong 6 April 2011

In the last lecture we gave a definition of secure two-party computation for honest-but-curious
adversaries, and showed a secure protocol for oblivious transfer (assuming the existence of enhanced
trapdoor permutations). We now sketch how to implement a protocol for general functionalities.

1 Secure two-party computation

Let us now consider an arbitrary, but not too large functionality (f, g). By “not too large”, we
mean that Alice’s and Bob’s inputs come from some set {1, . . . , N}, where N is reasonable (so
computations in time N or N2 are tractable for Alice and Bob). For example, we can think of the
functionality g(x, y) = 1 if x < y and 0 otherwise, but where x and y are known not to be too
large, say between 1 and 10, 000.

Without loss of generality, we will only consider functionalities of the form (⊥, g) – namely, Alice
obtains no input at the end of the interaction. The reason is that we can obtain an (s, 2ε) secure
protocol for (f, g) by running an (s, ε) secure protocol for (⊥, g) followed by an (s, ε) secure protocol
for (f,⊥). (I’ll leave the proof as an exercise.)

Consider the following protocol for (⊥, g): Alice and Bob get inputs x and y from {1, . . . , N} and
run the N -oblivious transfer protocol on inputs (g(x, 1), . . . , g(x,N)) (for Alice) and y (for Bob).

This protocol is clearly functional. Its security follows directly from the security of N -oblivious
transfer: Since Alice’s view and Bob’s view are identical as in the oblivious transfer protocol,
the simulators for oblivious transfer can be used directly. Namely, on input (x,⊥), Alice runs
her oblivious transfer simulator on input (g(x, 1), . . . , g(x,N),⊥), and Bob runs exactly the same
simulator as for oblivious transfer.

But what happens if the domain of g is large – say x and y take values in {0, 1}n? It turns out
there is a protocol whose running time is proportional to the circuit size of g.

To explain the protocol we need to recall a bit about circuits. Recall that a circuit C : {0, 1}n →
{0, 1} of size s consists of n gates consisting of the input gates x1, . . . , xn and s− n internal gates
Gn+1, . . . , Gs (some of which are marked as output gates). Each internal gate Gk is labeled by
either AND, OR, or NOT and takes two inputs i and j (i, j < k) where i and j are the indices of
some previous internal gates. The computation of the circuit proceeds by propagating the values
of the gates in increasing order, until the outputs are obtained.

The protocol we describe is asymmetric. Alice will hide the value of each wire in the circuit by
masking it with a random bit of her choice. Bob will learn the masked values of the wires in the
circuit one by one by “securely evaluating” the circuit starting at the input gates all the way to
the output gate. To do so, for each gate G Alice and Bob engage in an oblivious transfer protocol
that reveals to Bob the masked value of the output of G given that he knows the masked values
of the inputs of G. At the end of the protocol, Alice merely reveals the randomness corresponding
to the output gate(s) of C ′ – which allows Bob to recover the values at this gate without learning
anything else.

1

The two-party protocol On inputs x ∈ {0, 1}n (for Alice) and y ∈ {0, 1}n (for Bob):

A: For each gate k in the circuit, choose a random bit hk ∼ {0, 1}. Send the values x1 +
h1, . . . xn + hn (for Alice’s input gates) and the values hn+1, . . . , h2n (for Bob’s input gates).

B: Upon receiving u1, . . . , un, hn+1, . . . , h2n, set un+k = yk + hn+k for k from 1 to n.

A,B: For k from 2n+ 1 to s, run the 4-oblivious transfer protocol on inputs (w00w01w10w11, uiuj),
where wab = Gk(a + hi, b + hj) + hk, ab ∈ {0, 1}2, and i and j are the inputs to gate k. Bob
sets uk to equal the output of the oblivious transfer (namely, uk = Gk(ui +hi, uj +hj) +hk).

A: Send the values ho for every output gate o.

B: Output the values uo + ho.

This protocol is clearly functional: After running the protocol for gate i, Bob has computed the
masked value ui = Gi + hi corresponding to the output of gate i. In the last step, Bob outputs
uo + ho = Go, the value at the output gate of the circuit.

Instead of proving the security of this protocol in full generality, I think it is more instructive to
do an example. Suppose Alice and Bob want to jointly compute the following functionality:

x1 y1 y2

G1

G2

+h1 +h2

+h3

+h4

+h5

Before we argue security, let’s introduce some notation. Let viewOTi
A , viewOTi

B denote the views of
Alice and Bob, respectively, when executing the oblivious transfer protocol for gate Gi, and let
SOTi
A and SOTi

B denote the output of the simulator in these two protocols.

The views of Alice and Bob in the two-party protocol on inputs x, y are

viewA(x, y) = (h1, h2, h3, h4, h5, viewOT1
A , viewOT2

A)

viewB(x, y) = (x1 + h1, y1 + h2, y3 + h3, viewOT1
B , G1 + h4, viewOT2

B , G2 + h5, h5).

(For simplicity we omit the inputs to viewOTi
A and viewOTi

B .) We now show how to simulate Alice’s
view. Recall that Alice’s input in OT1 are the four values w1,ab = G1(a+h1, b+h2), and her inputs
in OT2 are the values w2,ab = G2(a+h4, b+h3). So it is reasonable to replace Alice’s views in OT1

and OT2 with the corresponding simulations:

SA(x,⊥) = (h1, h2, h3, h4, h5, S
OT1
A (w1,ab), S

OT2
A (w2,ab)).

2

We now sketch the argument that SA and viewA are computationally indistinguishable. (We will
omit Alice’s simulator input (x,⊥) for simplicity; besides, it is not used in the simulation.) To do
so consider the hybrid distribution

HA = (h1, h2, h3, h4, h5, viewOT1
A , SOT2

A (w2,ab)).

If SA and viewA are (s, ε) computationally distinguishable, then either (SA, HA) or (HA, viewA) are
(s, ε/2) computationally distinguishable. In the first case, we can distinguish between SOT1

A (w1,ab)

and viewOT1
A by a distinguisher Dx,y(T) that works like this: First, produce a “distinguishing view”

for Alice by running the protocol except that the messages in OT1 are replaced by T and the
messages in OT2 come from SOT2

A (w2,ab), then invoke the distinguisher for (SA, HA). In the second

case, we can distinguish between SOT2
A (w2,ab) and viewOT2

A by a distinguisher D′x,y(T) that produces

a “distinguishing view” for Alice by running the protocol, with viewOT1
A in the first round, and the

messages coming from T used in the second round, then invoking the distinguisher for (HA, viewA).

Now let’s argue that Bob’s view can also be simulated. Recall that Bob’s input in OT1 are the
values u1 = x1 +h1, u2 = y1 +h2 and his output is u4 = G1 +h4. Bob’s input in OT2 are the values
u4 = G1 + h4, u3 = y2 + h3 and his output is u5 = G2 + h5. So it makes sense for Bob to try and
carry out the following simulation:

(x1 + h1, y1 + h2, y3 + h3, S
OT1
B (x1 + h1, y1 + h2), G1 + h4, S

OT2
B (G1 + h4, y2 + h3), G2 + h5, h5).

The problem is that Bob does not know some of the values here, like x1 and G1. However, since
these values are masked by independent random bits, Bob can pretend that the unknown values
are random without affecting the distribution of the simulated view. This suggests the following
simulation:

SB(y,G2(x, y)) = (u1, u2, u3, S
OT1
B (u1, u2), u4, S

OT2
B (u4, u3), u5, u5 + G2)

These two distributions are identical, but now Bob does not need to know the values at the various
gates to carry out the simulation. The only issue is the last value h5, which is correlated with
G2 + h5. Bob can simulate this value since he knows the output value G2 of the circuit.

We will omit the argument that SB(y,G2(x, y)) and viewB(x, y) are computationally indistinguish-
able. It is essentially identical to the argument we used for Alice.

I hope it is plausible that this argument can be generalized to arbitrary circuits. However, the
proof appears to be quite tedious. See Goldreich (Section 7.3 of Volume 2) for the general proof
(of a slightly different protocol).

2 Malicious adversaries: A preview

As we noticed last time, one deficiency of the secure two-party computation protocols we described
(specifically, the oblivious transfer protocol) is that they only work if the adversary behaves as
prescribed. If Bob deviates from his instructions in the protocol, then he can learn Alice’s input.

To achieve security beyond honest-but-curious adversaries, we need to design our protocols to be
resilient against scenarios where Alice and Bob behave in arbitrary malicious ways. This seems
like a hopeless task, as there are infinitely many “bad” ways in which the parties in a protocol can
behave. How should we go about handling all of them?

3

Perhaps a natural way to start would be to revisit the oblivious transfer protocol and try to fix
it so it becomes resilient even under malicious attacks. However, it turns out that the problem is
easier to solve if we aim higher. Instead of improving a specific protocol like oblivious transfer, we
will describe a general methodology that takes any two-party computation protocol secure against
honest-but-curious adversaries and “compiles” it into a protocol that is secure against malicious
adversaries. The ingenious idea of Goldreich, Micali, and Wigderson is to take the protocol for
honest-but-curious parties and have arbitrary (malicious) parties act out the protocol, while proving
to each other that they are behaving honestly!

This sounds paradoxical: We usually think of honesty as a virtue that has to be taken on faith
and cannot be proven. For example, when I issue a take-home exam and ask you not to look up
the solutions, you have no way of proving to me that you behaved honestly. (In contrast, you can
easily prove to me that you were dishonest by showing me where you copied your solutions from.)
If we cannot prove honesty in real life, how can we expect to do so in two-party protocols?

An important observation is that once Alice’s and Bob’s inputs and their internal randomness in
the protocols is fixed, the protocol is deterministic. If we forgot about privacy for a moment, an
easy way to ensure the parties behave honestly is to run the protocol together: Before starting the
protocol, the parties share their inputs and their internal randomness, and each party can simulate
the other’s view to check that it has behaved honestly.

However, revealing any information about inputs and internal randomness is antithetical to privacy.
So instead of revealing the inputs and their randomness to one another as a plaintext, they will
give each other the required information in encoded form. The encoding must not reveal anything
about the original information, but should be sufficient to verify that the parties behave honestly.
This encoding will be obtained using a cryptographic primitive called a commitment scheme. This
is the digital analogue of sending an item in a locked box: The receiver has no idea what the item
is, but should the need arise to reveal the item, the sender can provide a key and the receiver can
unlock the box and retrieve the item.

Once Alice has an encoding of Bob’s input and randomness, how can she verify that Bob is behaving
honestly? To do so, Bob must convince Alice that he is following his prescribed instructions using
his input and his internal randomness, which Alice has an encoding of. However, in order to preserve
privacy, his “argument” to alice must not reveal anything about his input and randomness. In other
words, Bob has to convince Alice that his actions are consistent with Alice’s encoding of Bob’s
private information, without revealing to her what that private information is! The techonlogy
we will use to achieve this seemingly paradoxical requirement is called a zero-knowledge proof. A
zero-knowledge proof allows us to verify a statement (in this case, the statement ”my actions in the
protocol are consistent with the private information whose encoding you have”) without revealing
any information beyond the validity of this statement!

Even after committing to his private information and applying zero-knowledge to certify he is
behaving honestly, there is one more way in which Bob can cheat in his execution of the protocol.
This has to do with his choice of internal randomness. There is no guarantee that the randomness
used by Bob comes from a truly random source and that it is independent of other information like
his input. How can Alice ensure that the randomness used by Bob indeed consists of truly random
independent bits? One possibility is for Alice to supply Bob with his random bits; however, Bob’s
bits must also remain private, so this is inadequate. The solution is for Alice and Bob to engage
in a (random) coin tossing protocol. This is a protocol for computing the two-party functionality
(⊥, r), where r ∈ {0, 1}n is a uniformly random string.

4

To summarize, the transformation from security against honest-but-curious adversaries to secu-
rity against malicious (active) adversaries works by combining three building blocks: commitment
schemes, zero-knowledge proofs, and a coin tossing protocol. These building blocks must themselves
ensure security even against malicious adversaries. We now describe the security requirements and
give candidate implementations of these protocols.

3 Commitment schemes

A commitment scheme is the digital analogue of the following two-phase process. Initially, Bob
holds an item b that Alice does not know. In the first phase, Bob puts b in a box, locks the box,
and sends the locked box to Alice. The box is opaque so Alice cannot see what is inside. However,
once Alice receives the box, Bob cannot change its contents. This is called the commitment phase.

In the second phase, Bob sends the key of the lock to Alice. Alice opens the box and inspects its
contents. This is called the revealment phase.

Informally, we expect a commitment scheme to have the following two properties:

• Hiding: The commitments of different items appear indistinguishable to Alice.

• Binding: The contents of the locked box cannot be changed. In particular, Bob cannot
change what he put in the box by sending a different key to Alice in the revealment phase.

For simplicity we will start with one-bit commitment schemes. Here, Bob’s input is a single bit
b ∈ {0, 1}. We will formalize the hiding property by an indistinguishability requirement: The
commitments of bit 0 and bit 1 appear identical to Alice.

One thing to remember is that commitment is not an end in itself – at the end, both Alice and Bob
get Bob’s private input – but a tool for enforcing honest behavior on Bob’s part. In our application
to secure two-party computation, the revealment phase will never be carried out in the protocol;
we will merely use the existence of revealments to ensure that Bob behaves consistently throughout
the protocol.

Definition 1. An (s, ε) secure one-bit commitment scheme with key length k is a pair of algorithms
(Com,Rev) with the following properties:

• Functionality: For every K and b, Rev(K,Com(K, b)) = b.

• Security - hiding: The distributions Com(K, 0) and Com(K, 1) are (s, ε) computationally
indistinguishable, where K is chosen at random from {0, 1}k.

• Security - binding: For all K, K ′, and b, Rev(K ′, Com(K, b)) ∈ {b, error}.

The hiding requirement says that commitments of different bits look indistinguishable to Alice.
The binding requirement says that a given commitment cannot be opened in more than one way.1

1There is an alternative definition that allows for a commitment to be opened in two ways, but makes it compu-
tationally infeasible to produce a commitment with two keys that give different openings.

5

We now show a construction of a commitment scheme based on a one-way permutation. Let
f : {0, 1}k → {0, 1}k be a permutation and h : {0, 1}k → {0, 1} be a hardcore bit for f . Consider
the following scheme:

Com(K, b) = (f(K), h(K) + b) Rev(K,C,L) =

{
L + h(K), if C = f(K)

error, otherwise.

Theorem 2. If h is an (s, ε) hardcore bit for f , then (Com,Rev) is an (s−O(1), 2ε) secure one-bit
commitment scheme.

Proof. The functionality is straightforward. The binding property follows from the fact that f is
a permutation. The hiding property follows from the usual argument: If (f(K), h(K) + 0) and
(f(K), h(K) + 1) are (s, 2ε) distinguishable, then at least one of them is (s, ε) distinguishable from
(f(K), B), where B is a random bit, and so h is not an (s−O(1), ε) hardcore bit for f .

To obtain a commitment scheme for more than one-bit messages, one solution is to commit to each
bit in the message separately (using independent keys). There are also more efficient schemes that
use shorter keys.

4 Coin flipping

We now describe a protocol for Alice and Bob to agree on a common random bit. In the honest-
but-curious adversary model, this problem is trivial: Alice can choose a random bit and send it to
Bob. When Alice and Bob are malicious, this does not work: Instead of selecting a random bit,
Alice can choose a bit that is favorable to her and affect the bias of the output.

To ensure that the output is random, it seems that we would need to make the outcome dependent
on both Alice and Bob. Here is one idea: Alice chooses a random bit rA, Bob chooses a random
bit rB, and they output rA + rB. Then even if one of the parties tries to cheat, as long as the other
party plays fairly the outcome will be truly random.

The problem is that this protocol cannot be realized in our communication model. When Alice and
Bob communicate, one of them has to go first. But if Alice sends her bit rA first, then Bob can
make his choice rB dependent of rA – say if he wants the outcome to be zero, he can set rB = rA.

It turns out that a simultaneous exchange of messages can essentially be simulated in our usual
(asynchronous) communication model with the help of commitments. Before showing how com-
mitments help, let us give a definition of the task we want to achieve: coin flipping with malicious
parties.

The functionality requirement is straightforward. To formulate it, we need to extend our definition
of “two-party computation” from last lecture to allow for computing randomized functionalities.
A randomized functionality is a pair of functions f(r, x, y) and g(r, x, y), when in addition to the
inputs x and y provided to Alice and Bob respectively, f and g also take in a random string r.
We say that an interactive protocol (A,B) is a two-party computation of (f, g) if for every pair of
strings a and b,

Pr[A(x) = s and B(y) = b] = Pr[f(r, x, y) = a and g(r, x, y) = b].

6

Under this definition, a coin flipping protocol is simply a two-party computation for the functionality
f(r, x, y) = g(r, x, y) = r, where r ∼ {0, 1} is a random bit.

Definition of security We now want to define security. For now let’s not worry about secrecy.
However, we want to say that even if one of the parties does not play by the rules of the protocol,
he or she cannot affect the randomness of the outcome. To define this, we need to consider what
happens in the protocol when the honest parties A and B are replaced with malicious parties A∗

and B∗ that may deviate from the instructions in the protocol.

Definition 3. Let (A,B) be a coin-flipping protocol in which Alice and Bob exchange k messages.
We say that (A,B) is (s, ε) secure against malicious adversaries if

• For every interactive algorithm A∗ of circuit size s that participates in k rounds of interaction,
in the interactive protocol (A∗, B):∣∣Pr[B = 1]− Pr[R = 1]

∣∣ ≤ ε

• For every interactive algorithm B∗ of circuit size s that participates in k rounds of interaction,
in the interactive protocol (A,B∗):∣∣Pr[A = 1]− Pr[R = 1]

∣∣ ≤ ε

where R ∼ {0, 1} is a uniformly random bit.

The first condition says that even if Alice tries to deviate from the protocol, she can only affect the
bias of the outcome by at most ε. The second condition imposes the same requirement on Bob. So
as long as one of the parties behaves honestly, if ε is small, the other one does not have to gain
much by deviating from the protocol.

The definition gives no guarantee on the outcome of the protocol if both parties are malicious. It is
easy to see that in such a case no guarantee can be given: If both parties behave deterministically
then the outcome can never be a random coin flip.

(One issue I have with this definition is that from a game-theoretic point of view, it does not really
provide an incentive to either party to behave honestly. If Alice can gain an advantage of ε by
behaving maliciously, then she should change her behavior in order to gain that ε, and the same
goes for Bob. But in that case neither of the parties ends up playing by the rules and there is no
guarantee on the outcome. It would be nice if one could also provide some sort of game-theoretic
guarantee that says Alice could not gain more than ε by switching strategies, regardless of Bob’s
strategy, and vice-versa. However I don’t know if such a definition is achievable.)

One type of attack that is not captured by this definition is the following: If after seeing the first
few messages from Alice, Bob does not his odds, one thing he could do in real life is stop playing
(participating in the protocol) altogether. In that case no output is produced. One possibility is to
run the protocol again and again until an output is obtained, but in that case the output may be
biased towards one of the parties. It is known that for two-party computations, this bias cannot
be avoided, but it can be made smaller by increasing the number of rounds of interaction. Another
possibility is to penalize the party that aborts the protocol.

In our definition, we avoid the abortion problem altogether by requiring that the malicious parties
A∗ and B∗ participate in at least k rounds of interaction.

7

The coin flipping protocol We now describe the coin flipping protocol. It makes use of a
commitment scheme (Com,Rev).

A: Choose a random bit rA ∈ {0, 1}, a random K ∈ {0, 1}k and send Com(K, rA).

B: Upon receiving a commitment C, choose and send a random bit rB ∈ {0, 1}.

A: Upon receiving the bit b, send the key K and output rA + b.

B: Upon receiving key K ′, output Rev(K ′, C) + rB, if Rev(K ′, C) 6= error, and rB otherwise.

If both Alice and Bob behave honestly, then the outcome of this protocol for both of them is the
sum rA + rB, which is a uniformly random bit. We now argue that the protocol is secure against
malicious adversaries even if the parties are not honest. Let’s start with the easier case when Alice
is dishonest.

Claim 4. For every A∗ that participates in three rounds of interaction, Pr[B = 1] = 1/2.

Proof. In the last step of the protocol, Bob outputs either rB if Rev(K ′, C) = error, and rB + rA
otherwise. Since rA is independent of rB, in either case the output of Bob is a uniformly random
bit.

Claim 5. Assume (Com,Rev) is an (s, 2ε) secure commitment scheme. Then for every B∗ of size
at most s that participates in three rounds of interaction, |Pr[A = 1]− Pr[R = 1]| ≤ ε.

Proof. We argue by contradiction: We will show that if |Pr[A = 1] − Pr[R = 1]| > ε, then
(Com,Rev) is not (s, 2ε) secure. Specifically, we will show that Com(K, 0) and Com(K, 1) can be
distinguished within ε by a circuit of size s.

In the first round of the interaction, the malicious B∗ takes as input Com(K, rA) and produces as
output a (possibly randomized) bit b(Com(K, rA)). This b is computed by a circuit of size at most
s. By our assumption,

|Pr[rA + b(Com(K, rA)) = 1]− Pr[R = 1]| > ε.

Conditioning on rA = 0 and rA = 1, we obtain

|12 Pr[b(Com(K, 0)) = 1] + 1
2 Pr[b(Com(K, 1)) = 0]− Pr[R = 1]| > ε.

Since Pr[b(Com(K, 1)) = 0] = 1− Pr[b(Com(K, 1)) = 1] and Pr[R = 1] = 1/2, we obtain

|Pr[b(Com(K, 0)) = 1]− Pr[b(Com(K, 1)) = 1]| > 2ε

contradicting the assumption that (Com,Rec) is (s, ε) secure.

8

	Secure two-party computation
	Malicious adversaries: A preview
	Commitment schemes
	Coin flipping

