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In the last three lectures we introduced several ingredients that go into the design of secure two-
party computation protocols. Let us recall what they are:

• Secure two-party computation in the honest-but-curious model: For every pair of functional-
ities (f(x, y), g(x, y)) we gave a pair of interactive algorithms A, B, so that the output of the
protocol (A(x), B(y)) equals (f(x, y), g(x, y)), and the view of either party in this protocol
can be simulated given only its input and output.

• A bit commitment protocol: This protocol gives a way for Bob to commit to a value x to
Alice in a way that is hiding (Alice cannot distinguish commitments to different values) and
binding (Bob can only decommit to the value he has previously committed to).

• A coin-tossing protocol: This protocol gives a way for Alice and Bob to agree on a random
string.

• Zero-knowledge proofs for any proof relation: In this protocol, Bob wants to convince Alice
that a statement x is true, but without revealing any additional information. In addition to
x, Bob has a proof y (which we model as membership in some proof relation R). At the end
of the interaction, Alice is convinced that x is true, but does not gain information about y
(or anything else).

Today we will sketch how these elements go into the construction for secure two-party computation
for arbitrary functionalities with malicious parties. The construction will require an additional
feature of (certain) zero-knowledge proofs called “knowledge extractability”. But before we go into
it, we need to give a definition of secure two-party computation.

1 A definition of secure two-party computation

Before we attempt a definition of secure two-party computation, let us imagine what things can go
wrong when we try to achieve a “secure” implementation of a two-party functionality. Recall that
in a two-party functionality, Alice and Bob have their private inputs x and y and their goal is to
obtain the values f(x, y) and g(x, y).

In an ideal definition of secure two-party computation, we would like to make as few assumptions
as possible about how a dishonest party would act in a protocol for computing (f, g). Essentially,
we would like to say that a dishonest party should be able to do whatever they want. By allowing
a dishonest party to behave in an arbitrary way, however, we may affect the functionality of the
computation. A dishonest Alice may for example provide a “fake” input x∗ to the protocol, or
simply refuse to participate in the protocol altogether. However, we want to say that even these
functionally devious behaviors do not affect the security of the protocol: As long as one of the two
parties is honest, no matter what the other party does, the dishonest party should not be able to
deduce any private information by running the protocol.

For simplicity let us first consider asymmetric functionalities of the type (x, y)→ (⊥, g(x, y)) where
only Bob gets an output from the computation. One possibility in such computations is that Alice
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simply refuses to participate in the protocol (since she gets nothing out of it anyway). However
refusing to participate is an observable action that may trigger some punishment in the real world,
so she may want to avoid it.

Another possibility is that she participates in the protocol but does not play by the rules, with
the hope of finding out some private information; perhaps she engages in a couple of rounds of
interaction, at which point she finds out some of Bob’s private information and she decides to
abort. Our definition will rule out this possibility: If Alice aborts at any point during the protocol,
Bob will not get his output, but the privacy of his input will not be compromised.

Here is a more subtle attack that can be done from Bob’s side. After Alice sends the first message,
Bob replaces his actual input x with some information that Alice revealed in her first message.
Although by itself Alice’s first message may not reveal anything unintended, it is possible that by
correlating his private input with it, the output of the protocol would reveal some of Alice’s private
information.

A useful way to decouple functionality attacks from security attacks is by introducing an “ideal
protocol” of secure computation, in which Alice and Bob can count on a trusted authority T to
do the secure computation for them. In an ideally secure implementation of the computation
(x, y)→ (⊥, g(x, y)) this is what we may expect to happen:

The ideal protocol (Ã, B̃). On inputs x for Alice and y for Bob:

1. Alice submits x privately to the trusted party T . At the same time, Bob submits y privately
to T .

2. Upon receiving x and y, T performs the computation g(x, y), privately reveals the output to
Bob, and sends the message ⊥ to Alice. If Alice did not send an input in the first round,
T sends the message Alice aborted to Bob. If Bob did not send an input, T forwards the
message Bob aborted to Alice.

3. Alice and Bob (privately) output the message sent to them by T .

In this ideal protocol, Alice and Bob are allowed to (1) refuse participating in the protocol and (2)
submit inputs to the trusted party that are different from their actual inputs. However, these are
essentially the only “attacks” they can perform. If they refuse to participate, their refusal can be
detected (by the trusted party), and in that case no party gets any information besides the fact
that the other party aborted. On the other hand, if they both decide to participate (by submitting
inputs x∗ and y∗), then each party gets exactly what it is supposed to – Alice gets nothing while
Bob gets g(x∗, y∗).

Our definition of security will require that whatever attack Alice can mount in the real protocol
against an honest Bob can be emulated by an Alice in the ideal protocol. In particular, it implies
that (1) Privacy cannot be violated even if a party decides to abort or misbehave (send an invalid
message) in the middle and (2) The inputs that Alice and Bob choose to run the protocol on are
independent of one another (more precisely, if a party violates this condition it will be forced to
abort the protocol).

The definition of security is simulation-based: It says that whatever information a malicious Bob B∗

can obtain based on his view in the execution of the real protocol can be simulated by a malicious
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Bob B̃∗ in the ideal model that either aborts, or chooses some input y∗ and makes a decision based
on y∗ and the output g(x, y∗) provided by the trusted party, and similarly for Alice.

Definition 1. Let (Ã, B̃) be the ideal protocol for the functionality (x, y)→ (⊥, g(x, y)). A pair of
interactive algorithms (A,B) is an (s, ε) secure implementation of (Ã, B̃) with simulation overhead
oh(·) if

• Functionality: The protocol (A(x), B(y)) computes (⊥, g(x, y)).

• Security for Alice: For every interactive algorithm B∗ there exists an interactive algorithm
B̃∗ so that for every input x, the distributions on (pairs of private) outputs of (Ã(x), B̃∗) and
(A(x), B∗) are (s, ε) computationally indistinguishable, where the running time of B̃∗ is at
most oh of the running time of B∗.

• Security for Bob: For every interactive algorithm A∗ there exists an interactive algorithm
Ã∗ so that for every input y, the distributions on (pairs of private) outputs of (Ã∗, B̃(y)) and
(A∗, B(y)) are (s, ε) computationally indistinguishable, where the running time of B̃∗ is at
most oh of the running time of B∗.

Let us compare this definition with the simulation-based definitions of security that we used to
define security in the honest-but curious model, as well as the zero-knowledge property of proofs.
Here, too, we would like to have a similar definition: We want to say that “whatever Alice can learn
by observing the interaction in the actual protocol, she can also simulate in the ideal protocol”.
However, we cannot simply compare the views of the interactive algorithms A∗ and Ã∗ representing
Alice in the two protocols, as these views are syntactically different. Instead what we say is this:
Based on her view, the interactive algorithm A∗ can compute any output she wants in the real
protocol. Our security requirement says that this output can be emulated in the ideal protocol
(where Alice can only deviate either by aborting or choosing an input x∗ different from x), even
when conditioned on (honest) Bob’s output.

This definition is quite strong and tricky to achieve even for seemingly trivial functionalities. As
an example, let’s look at a functionality of the type (x,⊥)→ (⊥, g(x)), where g : {0, 1}n → {0, 1}n
is some function. A trivial protocol for this functionality is for Alice to simply send the value g(x)
to Bob, and for Bob to output this value, while Alice outputs ⊥. However, this protocol may not
be a secure implementation of the ideal protocol.

To see why, consider a cheating Alice A∗ that chooses a random r ∈ {0, 1}n, sends r to Bob,
and privately outputs r. To prove this protocol is secure, we need to come up with an interactive
algorithm Ã∗, which includes an input x∗ that Alice submits to the trusted party, so that (Ã∗, g(x∗))
is computationally indistinguishable from (A∗, r). In particular, g(x∗) must be computationally
indistinguishable from r. In certain cases – for example if g is the zero function – this is certainly
impossible to achieve. But even if g is surjective (i.e., every r is a possible image of g), while in
principle it should always be possible to find an x∗ so that g(x∗) is computationally indistinguishable
from a random string, it may be computationally very expensive to do so, so it is not clear how to
achieve a secure implementation with reasonably small simulation overhead.
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2 Knowledge extractors

It seems that in order to design a secure implementation of the functionality (x,⊥)→ (⊥, g(x)), we
need to hold Alice accountable that the value she claims for g(x) was actually obtained by applying
g to her input x. Since her input x is private, it is unavoidable (and allowed in the ideal protocol)
that she produced Bob’s output by applying g to some other input x∗. We have to ensure that this
is the only way in which she can cheat.

A solution that comes to mind is zero-knowledge proofs. Consider the proof relation Rg consisting
of those pairs (y, x) such that y = f(x). After Alice sends the value g(x), Bob may ask Alice to
certify (in zero-knowledge) that g(x) has a proof in Rg. However, in case g(x) is surjective, this
statement is vacuous: There certainly exists some x∗ such that (g(x), x∗) ∈ Rg, so a zero-knowledge
proof (or a proof of any kind) does not seem to help at all!

The issue here is somewhat different: In order to simulate a cheating Alice A∗ in the real protocol
by a cheating Alice Ã∗ in the ideal protocol, Bob needs to be convinced that Alice obtained the
value g(x) by indeed applying g to some input x; or in other words, that Alice “knows” x. But what
does it mean for an interactive algorithm to know something? It seems that a precise definition of
knowledge, in this context, is out of the question.

To explain it, let us revisit our discarded idea of realizing the implementation of realizing this
functionality via a “zero-knowledge proof”. Although the guarantee provided by zero-knowledge
proofs seems inadequate for our task, let us look at an implementation of our zero-knowledge proof
for the task at hand anyway:

Image transmission protocol On input x for Alice:

A: Send the value g(x) to Bob.

A,B: Engage in the “zero-knowledge protocol” for statement g(x) (available to Bob) and proof
x (available to Alice). Specifically, repeat the following 4m log(1/ε) times, where m is the
number of edges in G below:

A: Convert the pair (g(x), x) into (G, col) where G is a graph and col is a 3-coloring. Send
commitments to all the colors col(v) to Bob.

B: Convert the value r (supposedly g(x)) into a graph G′. Choose a random edge (u, v) of
G′ and ask Alice to open the commitments to col(u) and col(v).

A: Send Bob the keys to the respective commitments.

B: If the colors to the commitments are the same, output Alice aborted.

B: If you reached this point, output g(x).

If, at any point, Alice (resp., Bob) sends an incorrectly formatted message or fails to send a mes-
sage, Alice (resp., Bob) outputs Bob aborted (resp., Alice aborted). (The number of repetitions
4m log(1/ε) of the zero-knowledge protocol was chosen in order to make that protocol sufficiently
sound.)

Clearly if Alice and Bob are honest, this protocol computes the given functionality. We now sketch
why this protocol is a secure implementation of the ideal protocol (Ã, B̃).
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Let us first consider the case of a dishonest Bob B∗. In the zero-knowledge protocol, this dishonest
Bob is given input g(x) and his view of the zero-knowledge interaction can be simulated by the
corresponding simulator S∗B(g(x)). To simulate B∗ in the ideal protocol, B̃∗ first submits his input
⊥, finds out the value g(x) from the trusted party, then runs the simulator S∗ on input g(x) to
generate a view for Bob in the real protocol. If at any point S∗ simulates an aborting message from
Bob’s part, B̃∗ scraps the simulation and sends an abort message to the trusted party. Otherwise,
B̃∗ completes the simulation by producing the output of B∗ when evaluated on the simulated view
produced by S∗B(g(x)).

Let’s now look at the more interesting case of a dishonest Alice A∗. In the first round, A∗ can send
an arbitrary message r to Bob. The ideal Alice Ã∗, on the other hand, is required to provide an
actual input x∗ to the trusted party. How is she going to derive x∗ based on r?

Here is how we reason about it. Let us look at what (honest) Bob B will do in one run of the
zero-knowledge protocol. Depending on the strategy A∗, with some probability p∗, Bob will detect
that Alice is cheating in this run and output the message Alice aborted. If this p∗ is not too small
– say larger than 1/2m, where ε is the hiding parameter of the commitment scheme – then after
repeating the protocol for 4m log(1/ε) times, Bob will detect the abortion with probability 1 − ε,
so if after simulating the interaction between A∗ and B for so many rounds, Ã∗ ever detects the
message Alice aborted, Ã∗ sends an abort message in the ideal protocol and outputs whatever A∗

would output. In this case, (Ã∗, B∗) will be (∞, O(ε)) indistinguishable from (A∗, B∗) since each
of them is (∞, O(ε))-indistinguishable from the distribution (A∗, Alice aborted).

If, on the other hand, p∗ is smaller than 1/2m, it means that with probability 1/2 over the choice
of A∗’s randomness, the probability that Bob detects Alice aborting is less than 1/m. Since there
are m different pairs of commitments that Bob can ask for and none of them lead to abort, the
committed values must be of a valid 3-coloring col of G (in other words, if at least one edge was
improperly colored, Bob would have output Alice aborted with probability 1/m). Then Ã∗ can
obtain this coloring col by simulating the interaction between A∗ and B repeatedly, using B to
challenge A∗ to obtain the decommitments of the endpoints for every edge of G. Using col, which
is a valid 3-coloring for G, one can then obtain a string x∗ such that (g(x), x∗) ∈ Rg, namely such
that g(x∗) = g(x). (The reduction from Rg to 3COL we introduced last time also allows us to
map proofs for 3COL back to proofs for Rg. Once it gets hold of this x∗, Ã∗ can provide it to the
trusted party and output the outcome of the simulated interaction between A∗ and B as its output.

This is not a proof, but at least I hope it gives some intuition how one could argue that the
proposed implementation of the image transmission protocol is secure. To argue security for Bob,
we used the following property of our zero-knowledge proof construction: If the prover (in this case,
Alice, who could be cheating) convinces Bob to accept with sufficiently high probability, then given
Alice’s interactive algorithm, it is possible to extract a proof (by running this algorithm on various
challenge messages). This is called a knowledge extraction property of zero-knowledge proofs. Not
all zero-knowledge proofs have this property, but fortunately the one we saw last time does.

In order to conform to the convention from last lecture, in this definition we switch the roles of
Alice and Bob: Now Bob is the prover and Alice is the verifier.

Definition 2. A (non-interactive) algorithm K is a knowledge extractor with threshold η for a zero-
knowledge protocol (A,B) for a proof relation R if for every pair (x, y) ∈ R and every interactive
algorithm B∗ such that

PrA(x),B∗ [A accepts] ≥ η
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when given the code of B∗ as input, K outputs a proof y∗ such that (x, y∗) ∈ R.

We just argued that following algorithm K is a knowledge extractor for B∗ with threshold 1−1/2m
in the zero-knowledge protocol for 3-coloring: First, run B∗ to produce candidate commitments
C(v) for the colors to all the vertices v. Then challenge B∗ on all the edges of the graph to reveal the
commitments for all v. If all commitment reveal to valid colors {R, G, B} and the revealed coloring
col is a valid 3-coloring of G, output col. Otherwise, repeat the protocol with fresh randomness for
B∗, until a valid 3-coloring is obtained.

A zero-knowledge proof that has a knowledge extractor whose running time is ke of the running time
of its input program is called a zero-knowledge proof of knowledge with proof extraction overhead
ke(·).

3 Secure two-party computation

We now have all the elements to describe the secure two-party computation protocol for any func-
tionality of the type (x, y) → (⊥, g(x, y)). Our starting point is the protocol (A,B) for this
functionality in the honest-but-curious model from Lecture 10. Recall that in this protocol, Alice
goes first. We will use A1, B2, A3, B4, . . . to denote the algorithms Alice and Bob use to compute
the corresponding message in the protocol (given their input, randomness, and messages previously
received from the other party).

Secure two-party protocol. Given inputs x for Alice and y for Bob:

1. (Input commitment phase) Alice sends a commitment Com(Kx, x) to her input x. The
commitment is followed by a zero-knowledge proof of knowledge for (Com(Kx, x), (Kx, x))
with respect to the proof relation

RCom = {(y, (K, z)) : y = Com(K, z)}.

Bob sends a commitment Com(Ky, y) to his input y. The commitment is followed by a zero-
knowledge proof of knowledge for (Com(Ky, y), (Ky, y)) with respect to the proof relation
RCom.

2. (Randomness commitment phase) Alice chooses a random string r′A, and sends a commit-
ment Com(KA, r

′
A) followed by a zero-knowledge proof of knowledge for (Com(KA, r

′
A), (KA, r

′
A))

with respect to RCom. Bob sends Alice a random string r′′A. Alice sets rA = r′A + r′′A.

Bob chooses a random string r′B, and sends a commitment Com(KB, r
′
B) followed by a zero-

knowledge proof of knowledge for (Com(KB, r
′
B), (KB, r

′
B)) with respect to RCom. Alice sends

Bob a random string r′′B. Alice sets rB = r′B + r′′B.

3. (Honest-but-curious protocol emulation phase) Alice and Bob emulate the honest-but-
curious protocol (A,B) when Alice’s input is x and her internal randomness is rA, Bob’s input
is y and his internal randomness is rB. The simulation proceeds as follows:

A: Send the first message A1(x, rA) (this is a deterministic function of x and rA, followed
by a zero-knowledge proof of (A1(x, rA), (x, rA,Kx,KA)) for the proof relation R1:
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(a1, (x, rA,Kx,KA)) ∈ R1 if a1 = A1(x, rA) and the commitment sent by Alice
in the input commitment phase equals Com(Kx, x) and the commitment sent
by Alice in the randomness commitment phase equals Com(KA, rA + r′′A).

B: Upon receiving a1 with a (valid) zero-knowledge proof, send the message B2(y, rB, a1),
followed by a zero-knowledge proof of (B2(y, rB, a1), (y, rB,Ky,KB)) for the proof rela-
tion R2 defined analogously to R1.

...

B: Upon completion of all the rounds, compute and output B’s output on input y, random-
ness rB, and exchanged messages a1, b2, . . . , at.

If at any point Alice sends an invalid message, or Bob does not accept one of her zero-knowledge
proofs, Bob outputs Alice aborted and halts, and same goes for Bob.

4 General functionalities

So far we only considered secure computations of the type (x, y) → (⊥, g(x, y)), where Bob gets
and output and Alice gets nothing. What about general functionalities (x, y)→ (f(x, y), g(x, y))?

Before we design a protocol and argue security, we need to define an ideal functionality for this
setting. A natural extension would be like this: First, Alice and Bob simultaneously submit their
private inputs x and y to the trusted party. The trusted party computes f(x, y) and g(x, y), and
sends f(x, y) privately to Alice and g(x, y) privately to Bob. If Alice refuses to submit an input,
the trusted party forwards the message Alice aborted to Bob and Bob outputs it, and same goes
for Bob.

What happens if we want to implement this functionality by a real protocol? It turns out it is not
always possible. A natural solution would be to extend the two-party protocol we just described
as follows: The commitment phases stay the same. Then we run the emulation phase first for
the functionality (x, y) → (f(x, y),⊥), and then for (x, y) → (⊥, g(x, y)). The problem with this
solution is that there is some point in the protocol at which Alice has received her answer f(x, y),
but Bob does not yet know his answer g(x, y). If Alice aborts the protocol at this point, her action
cannot be simulated in the ideal protocol: There, Alice and Bob find out the values f(x, y) and
g(x, y) simultaneously.

This issue has nothing to do with our implementation and is inherent in the problem: Even very
simple functionalities like (x, y)→ (r, r), where r ∼ {0, 1} are not achievable by this definition. No
matter how we design the protocol, there will be a point at which one party learns the output and
the other one doesn’t, and if the first party aborts at this point the outputs of the ideal protocol
can never be simulated.

To account for this problem of unfairness, we need to change our model of ideal functionality. There
are various possibilities, of which perhaps the simplest is to allow for one of the parties to be unfair,
but to require that this unfairness is detected in the protocol implementation.
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Ideal two-party protocol for general functionalities: On input x for Alice and y for Bob:

1. Alice sends x privately to the trusted party T . At the same time, Bob sends y privately to T .

2. If Alice did not submit an input, T forwards the message Alice aborted to Bob. Bob
outputs this message and halts. If Bob did not submit an input, T forwards the message
Bob aborted to Alice. Alice outputs this message and halts. Otherwise, if x∗ and y∗ are the
inputs submitted by Alice and Bob, T sends the value f(x∗, y∗) privately to Alice.

3. Alice privately outputs the received value from T and sends the message continue to T .

4. If T receives the message continue from Alice, T sends the value g(x∗, y∗) privately to Bob.
Otherwise, T sends the message Alice is unfair to Bob.

5. Bob privately outputs the value/message received from T .

A secure implementation with respect to this definition of “ideal two-party protocol” can now be
achieved by the protocol suggested above. First, Alice and Bob execute the input commitment phase
and randomness commitment phase. Then they jointly emulate the honest-but-curious protocol
for (x, y) → (f(x, y),⊥). If at any point Alice (resp., Bob) sends an invalid message, Alice (resp.,
Bob) outputs Bob aborted (resp., Alice aborted). Alice writes the output of this protocol on
her private output tape. Then Alice and Bob jointly emulate the honest-but-curious protocol for
(x, y)→ (⊥, g(x, y)). If at any point Bob sends an invalid message, Alice outputs Bob aborted. If
at any point Alice sends an invalid message in this phase, Bob outputs Alice is unfair. At the
end, Bob writes the output of this protocol on his private output tape.
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